Aerodynamic Profiles of Females with MTD

Amanda I Gillespie, M.S., CCC-SLP
Ph.D. student
University of Pittsburgh, Department of Communication Science & Disorders
Speech-Language Pathologist, University of Pittsburgh Voice Center

A perceived voice problem in the absence of any known underlying structural or neurologic abnormalities
Awan & Roy, 2009; Roy, 2003; Verdolini, Bryar, & Kassell, 2007

Synonyms include “hyperfunctional voice disorder,” “functional dysphonia,” and “muscle-misuse voice disorder”
Hillman, Holmberg, Perkell, Walsh, & Vaughan, 1989; Morrison, 1997; M. Morrison & L. Rammage, 1993; Roy, 2007

Likely due to multiple mechanisms.....

Primary MTD

Hillman, Holmberg, Perkell, Walsh, & Vaughan, 1989; Morrison, 1997; M. Morrison & L. Rammage, 1993; Roy, 2007

Abnormal chest wall activity
Hočevar-Boltežar et al., 1999; Rubin, Macdonald, & Blake, 2010

Paradoxical breathing
T. J. Hixon & Hoit, 2005; T. J. Hixon et al., 1976

Low lung volume requiring greater expiratory muscle activation (vs passive recoil)
T. J. Hixon & Hoit, 2005; T. J. Hixon, Mead, & Goldman, 1976

“breath-holding”
Shires, 1993

Respiratory-phonatory coordination

Airflow

<table>
<thead>
<tr>
<th>Est-P sub</th>
<th>Low</th>
<th>Normal</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>n=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>n=1</td>
<td>n=1</td>
<td></td>
</tr>
</tbody>
</table>
Small sample sizes
- Threat to external validity
- Generalizability
- Subjective clinical observations
- Lack of objective testing
- Unable to replicate
- Subject selection
- Mixed pools (+/- interventions)

Gaps

Research Questions
1. Do aerodynamic profiles of females with MTD differ from those of healthy speakers?
2. Can different patterns of aerodynamic profiles be identified for women with MTD?

Current Study
- Patient records 2005-2008 (single data collection system- Aerophone II (KayPENTAX, NJ))
- Females ≥ 18 y/o
- Initial visit dx MTD

Current Study
- 96 subjects
- Mean estimated subglottal pressure (est-P_{sub}) at MCP & loudness levels
- Mean translaryngeal airflow (airflow) at MCP & loudness levels
- Aero Methods: Hillman et. al., 1989; Holmberg et.al., 1988; Smitheran & Hixon, 1981
- Comparison group: Holmberg et al., 1988

<table>
<thead>
<tr>
<th>Mean P_{sub}</th>
<th>SD</th>
<th>Mean airflow</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 cmH\textsubscript{2}O</td>
<td>1.4 cmH\textsubscript{2}O</td>
<td>190 mL/sec</td>
<td>70 mL/sec</td>
</tr>
</tbody>
</table>
Do aerodynamic profiles of females with MTD differ from healthy speakers? YES.
- 1-sample t-test
- Mean est-Psub significantly different between groups (p<.001).
- Mean average airflow significantly different between groups (p<.003).

Can different patterns of aerodynamic profiles be identified for women with MTD? YES.
- TwoStep Cluster Analysis
- 5 distinct groups identified

Data Analysis & Results

<table>
<thead>
<tr>
<th>Est-P_{sub}</th>
<th>Airflow</th>
<th>Low</th>
<th>Normal</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>18.9% (n=17)</td>
<td>32.3% (n=29)</td>
<td>11.1% (n=10)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>17.8% (n=16)</td>
<td>20.0% (n=18)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First study to analyze large number of aerodynamic profiles of females with MTD
Aerodynamic profiles different between subjects with MTD vs healthy controls
- Detected 3 profiles previously identified (Hillman et al., 1989) + 2 additional:
 - Normal airflow, normal pressure
 - Task does not represent natural speech, does not represent disordered voice; other processes that cause MTD symptoms not captured by aerodynamic analyses
 - Low airflow, normal pressure
 - Increase in respiratory checking action
 - Holding back airflow
 - i.e. "breath-holding" (Stone, 1993)

Discussion
Discussion

<table>
<thead>
<tr>
<th>Est-P_{sub}</th>
<th>Airflow</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Normal</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>18.9% (n=17)</td>
<td>32.3% (n=29)</td>
<td>11.1% (n=10); n=2</td>
</tr>
<tr>
<td>Normal</td>
<td>17.8% (n=16); n=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>20.0% (n=18); n=1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limitations

- Retrospective
- Lack of some experimental controls - multiple clinicians collecting data, multiple years
- Loudness - may cause variability
- Task is not “conversational speech”

Relationship between psychological traits and voice disorders

- NA/anxiety \rightarrow MTD (Dietrich, et al., 2008; Andrews, et al., 1987; Kinz, et al., 1988; Roy et al., 2005; van Mersbergen, et al., 2008; Willinger et al., 2005)
- Relationship between respiration and psychological traits
 - Hyperventilation \rightarrow hypocapnia (decrease CO2)

Theoretical explorations

WHY?

It doesn’t add up…….
Theoretical explorations

- Glottal aperture increases/decreases as a function of blood-gas concentration
- Hypercapnia → decreased resistance
- Hypocapnia → increased resistance

Future directions

- Respiratory-laryngeal interactions in varying blood-gas conditions.
- Respiratory-laryngeal interaction in individuals with psychological disorders.

Theoretical explorations

- Perhaps changing laryngeal resistance - the ratio of subglottal pressure to airflow - in response to changing levels of carbon dioxide, is one explanation for the aerodynamic profile variability seen in individuals with MTD.
- Respiratory larynx - modulating airflow for respiratory blood-gas homeostasis
- Phonatory larynx - maintaining appropriate resistance for communication

Thank you!