Intrinsic laryngeal muscle activity in response to sympathetic nervous system activation

Leah B. Helou, M.A., CCC-SLP
Wei Wang, Ph.D.
Clark A. Rosen, M.D., FACS
Katherine Verdolini Abbott, Ph.D., CCC-SLP

Acknowledgements:
Amanda I. Gillespie, M.S.
Erin Glass
Neil Szuminsky, M.S.
Robin Ashmore, Ph.D.

Background & Introduction

Voice Stress

Fear

Introversion

Extroversion

Anxiety

Possible brain-larynx pathways

HPA axis
Somatic motor system
Autonomic nervous system

Dietrich (2008) summarizes the combined laryngeal effects of these three systems
- Decreased blood flow
- Decreased mucosal secretions
- Increased muscle tension

The autonomic-voice link

Larynx in isolation ≠ voice
- Voice literature replete with references to the voice-ANS link
- Larynx has clear sympathetic and parasympathetic innervation...
 - ...but is not “classically” considered part of ANS
 - ...but its role in valving for pulmonary system not discussed as it relates to ANS response
- Little understanding of functional laryngeal response to ANS activation
Present Study

- Primary research question: *How does a whole-body autonomic response manifest in the larynx?*
 - Hypothesis: Intrinsic laryngeal muscles will exhibit elevated activation at rest, during and following an experimentally elicited SNS response

Experimentally eliciting SNS response

- Several options
 - Cold pressor task
 - Mental arithmetic
 - Stroop (i.e., Color-Word Interference test)
 - Public speaking preparation
- All options produce robust [classically] sympathetic responses
 - Cardiovascular
 - Peripheral muscles
- Cold pressor task is only non-linguistic task

Present study

- Secondary research question: *Does subvocalization occur at the level of the larynx during minimal-stress cognitive tasks with linguistic underpinnings?*
 - Hypothesis: Greater activation of ILMs will be observed during silent reading and counting tasks relative to a state of rest.

Participants

- n=8 vocally normal females
- Negative history of
 - Voice disorders
 - Neck or throat surgery
 - Asthma
 - Blood clotting disorders
 - Depression, eating disorders, panic disorders, anxiety disorders
 - Dysautonomia
 - Current pregnancy, upper respiratory illness, allergies
Study Procedures

1. Place non-invasive equipment
 - blood pressure cuff
 - electrodes for EKG
 - EMG of trapezius, submental complex

2. Place fine-wire electrodes
 - right PCA
 - bilateral TA/LCA
 - bilateral CT

3. Guided relaxation
 Verify heart rate and blood pressure return to baseline

4. Laryngeal electromyography (LEMG) baseline patient at rest, supine, for 90 seconds

5. Subvocalization task
 - read (30 sec)
 - count backwards from 100 by 1 (30 sec)

6. Experimental task
 SNS activation via cold pressor task. Hand plunged into ice water (34.08º, SD 0.79º) for 3 minutes.

7. Verify placement
 - PCA: sniff
 - TA/LCA: valsalva
 - CT: pitch glide
 - Submental: swallow

8. Repeated LEMG baseline patient at rest, supine, for 90 seconds

9. Repeated Cold Pressor Task
 n=3 elected to repeat cold pressor task

Successful LEMG placement

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Live (audio-visual)</th>
<th>Begin Experiment (visual)</th>
<th>End Experiment (visual)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right PCA</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Left TA/LCA</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Right TA/LCA</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Left CT</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Right CT</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Analysis

- Z-scores calculated using interrupted time-series analysis (ARIMA, statistics module) performed in Matlab
- Findings significant at p < .05
Results: Baseline vs. CP (1st 90 seconds)

<table>
<thead>
<tr>
<th>ID</th>
<th>EKG</th>
<th>SUB</th>
<th>TPZ</th>
<th>PCA</th>
<th>LTA</th>
<th>RTA</th>
<th>LCT</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>↑</td>
<td>--</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>23</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>↑</td>
<td>--</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arrows indicate significance at α < 0.047. Hash marks indicate no significant findings. Shaded blocks indicate discarded channels.

Results: Repeated cold pressor task

<table>
<thead>
<tr>
<th>ID</th>
<th>EKG</th>
<th>SUB</th>
<th>TPZ</th>
<th>PCA</th>
<th>LTA</th>
<th>RTA</th>
<th>LCT</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>↑↑</td>
<td>--</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>↑↑</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Black symbol – comparing original LEMG to CP
Red symbol – comparing original LEMG to repeated CP

Arrows indicate significant at p < .05, and direction of change; Hash marks indicates no significant findings

Results: LEMG versus Subvocalization

<table>
<thead>
<tr>
<th>PCA</th>
<th>LTA</th>
<th>RTA</th>
<th>LCT</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Read Math</td>
<td>Read Math</td>
<td>Read Math</td>
<td>Read Math</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Evidence of functional autonomic response of the larynx
 - Overall, increased activation as a function of cold pressor task
 - Concomitant activation of adductory and abductory muscles
 - Somewhat more variable cricothyroid response
- Evidence of “laryngeal subvocalization” as a function of cognitive task with linguistic underpinnings
 - Highly variable findings within and across subjects
 - Must consider that non-verbal reading or math tasks may have triggered some level of anxiety or stress
 - Residual laryngeal activation from needles?
 - Self-soothing behaviors?
Considerations

- In functional voice impairment, what else is at play?
- Can less-invasive proxies really provide good estimation of laryngeal muscle tension?
 - Surface EMG
 - Laryngoscopy
 - Palpation
- How do interpersonal stressors affect the degree and pattern of muscle tension in the larynx via the ANS?
- Responses in this study may have been influenced by parasympathetic response

Intrinsic laryngeal muscle activity in response to sympathetic nervous system activation

Leah B. Helou, M.A., CCC-SLP
Wei Wang, Ph.D.
Clark A. Rosen, M.D., FACS
Katherine Verdolini Abbott, Ph.D., CCC-SLP

Acknowledgements:
Amanda I. Gillespie, M.S.
Erin Glass
Neil Szuminsky, M.S.
Robin Ashmore, Ph.D.

Relevant References

Relevant References