Treatment of TAA's:

WHICH PATIENTS ARE STILL BETTER SERVED WITH OPEN REPAIR?

Richard P. Cambria, M.D.
Chief, Division of Vascular and Endovascular Surgery
Massachusetts General Hospital
Professor of Surgery, Harvard Medical School

The “Gold Standard” in 2012 a Relative Consideration

- The results of open operation vary considerably as a function of environment
- Is the “question” → endograft vs. open
- Is the “question” → hybrid vs. open

GOOD RISK VS HIGH RISK

TAA Repair: MGH Results

- 23% non-elective cases
- Overall mortality 8%
- Paraplegia/paraparesis any degree 9.5%

TAA Repair: Late Results

- TAA a durable operation
- Late “events” in 10% → most other aneurysm resection: 3% with graft-related events
 - female sex, rupture predictive
- Late survival ≈ 60% @ 5 yrs = AAA
TAA Repair: Late Results

At 5 years after open operation, permanent loss of functional capacity occurred rarely.

TAA Repair in “Real World”

- Overall mortality 22.3% for elective cases!

Recovery After Open TAA Repair

- 1010 TAA repairs (21% ruptured)
- 19% overall op. mortality
- 31% one year mortality with linear correlation patient age

Patient Criteria

In “elective” management of degenerative TA/TAAs posture towards pt. whose:

- Advanced age
- Systemic (cardiopulm/renal) comorbidities
- Poor functional status

Makes open operation illogical.
Total Endovascular Repair: WHY NOT?

- Logistic/Regulatory Considerations
- Durability Concerns
- Patient Features
 - Urgent/Emergent Presentations
 - Good risk patients in . . . environment
 - Anatomic Considerations
- Type IV TAA
- Chronic Dissections/MARFAN's Narrow/angulated visceral segments
- SCI Considerations

TAA Repair (455 operations)

Independent Predictors of In-Hospital Mortality

<table>
<thead>
<tr>
<th>Variable</th>
<th>p (OR; 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative Cr> 1.8</td>
<td>0.048 (3.1; 1.4-6.8)</td>
</tr>
<tr>
<td>Total Operative Transfusion</td>
<td>0.008</td>
</tr>
<tr>
<td>Intraoperative Hypotension</td>
<td>0.015 (3.0; 1.2-7.3)</td>
</tr>
<tr>
<td>Cardiac Complications</td>
<td>0.016 (3.1; 1.2-7.8)</td>
</tr>
<tr>
<td>Severe Renal Failure</td>
<td>< 0.0001 (7.8;3.4-17.9)</td>
</tr>
</tbody>
</table>

TAA Repair (455 operations)

Variable

- Non-elective OR | 0.02 (2.1; 1.1-4.0) |
- TAA extent (I/II) | 0.015 (2.2;1.17-4.1) |
- Intra-Operative Hypotension | 0.0049 (3.3; 1.4-7.7) |
- Total Cross-clamp time | 0.012 |
- Epidural Cooling (Protective) | 0.02 (0.4; 0.2-0.8) |
- Severe Renal Failure | 0.031 (2.4; 1.1-5.2) |
- Pulmonary Complications | 0.0003 (4.0; 1.9-8.6) |

Anatomy Limitation?

Not applicable with present technology to genuine TAA extent???
⇒ Not so after 4/05
Hybrid Operation: Question Less Invasive Alternative

- Combination of debranching bypasses creates distal seal zone for TEVAR
- Aortic Arch
- Visceral Segment

Hybrid TAA
St. Mary’s Hospital, London

- Update in Houston 4/08 with approx 45 pts mortality/paraplegia in 20% range!

Hybrid Repair – MGH Results

- 23 high-risk pts (2005-07) → hybrid
- concurrent open TAA compared
- composite mortality/paraplegia DOUBLED in hybrid group (22% vs 11.7%)!

Preliminary Results of the North American Complex Abdominal Aortic Debranching (NACAAD) Registry

For the NACAAD investigators
NACAAD registry

Aneurysm classification

- Thoracoabdominal: 78%
- Pararenal: 22%

- Total patients: 208
- Aneurysm size: 6.6 ± 1.3 cm

Mortality

- 30 early deaths (14%)
 - Multisystem organ failure, 11
 - Cardiac event, 10
 - Ruptured aneurysm, 4
 - Ischemic stroke, 2
 - Intracranial hemorrhage, 2
 - Intraoperative hemorrhage, 1

- Mortality in centers with > 10 cases: 11% (0 – 21%)

Morbidity

- 140 patients (73%) had complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory complications</td>
<td>45</td>
<td>22</td>
</tr>
<tr>
<td>Acute renal insufficiency</td>
<td>39</td>
<td>19</td>
</tr>
<tr>
<td>GI Complications</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>Bleeding</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>Vascular complications</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Bleeding</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Spinal cord injury</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Wound complications</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>Dialysis</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Ischemic colitis</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Stroke</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Length of stay

- ICU: 10 ± 15 days
- Hospital: 20 ± 17 days

Type IV Results

Continued favorable results with open surgical repair of type IV thoracoabdominal aortic aneurysm.
Clinical Outcomes

N=178

- Mortality: 5 (2.8%)
- SCI: 4 (2.2%)
- HD / renal failure: 5 (2.8%)
- Any complication: 45 (25%)

Type IV Specific Outcomes

- 108 patients – 92% intact TAA
- 30-day mortality – 5.6%
- 1 case pplegia
- Impact of preop GFR

TEVAR - Recent Expert Consensus

- Op. mortality approx. 7.5% in hands of experts
- Favorable durability/freedom from reintervention
- Chronic Dissections/Marfans → Open Surgery

Survival Advantage for Chronic Dissection

- p=0.049
Conclusions: In patients with TAAA, blood supply to the spinal cord depends upon a highly variable collateral system.

SCI Considerations

SCI Extent I vs. II

• The importance of lumbar/pelvic collaterals, i.e. the observed SCI risk difference Extent I vs. II
• Implications for I.C. repair despite nl MEVOP in Extent II TAA

Conclusion

• Limitations on availability of total endovascular repair
• Poor experience with hybrid operations
• Open repair with current operative strategies remains “gold standard”

Centers of Excellence