Critical Care Management of Acute Ischemic Stroke
Nerissa U. Ko, MD, MAS
Associate Professor of Neurology
May 31, 2013

Disclosures
• Nothing to disclose

Selected slides courtesy of Wade Smith, MD, PhD

Overview
• Update on acute revascularization
• Acute supportive care
• Blood pressure management
• Post-stroke cerebral edema
• ICU care after stroke

Pathophysiology
• Time dependent
• Focal ischemia is different from global ischemia
• Energy failure-> Ca++ entry and cell death
• Glutamate toxicity
• Apoptosis

TIME IS BRAIN
Role of Time – IV rtPA

Most Recent Pooled Analysis of IV rtPA Trials

- NINDS Part 1
- NINDS Part 2
- ATLANTIS A
- ATLANTIS B
- ECASS II
- ECASS III
- EPITHET

Lees et al., Lancet, 2010

Revascularization Therapy with IV tPA

- Tissue plasminogen activator (t-PA)
 - IV t-PA is approved in US for AIS within 3 hours of symptom onset (OR 1.9; 95% CI 1.2-2.9)
 - 3 to 4.5 hour window is effective (ECASS-III)

Complications with IV tPA

- Bleeding
 - 6.4% vs. 0.6% in clinical trials
 - no mortality difference
 - Registry data shows improved safety (1.6% bleeding rate)
 - Increased risk if not adhering to NINDS trial protocol
 - Earlier treatment associated with better outcomes, less complications
- Angioedema (1.3-5.1%)
 - Swelling of lips, tongue self-limited
 - Rx: IV ranitidine, diphenhydramine, methylprednisolone
- Post-MI myocardial rupture (rare)
- Treatment of tPA-related bleeding
 - Transfuse blood
 - 10 units cryoprecipitate
 - 2 units FFP
 - 10 units platelets
 - PCC
 - Factor VIII
 - Aminocaproic acid (Amicar)
 - 1g/kg IV, followed by 1g/hr for 24 hours
 - Tranexamic acid
 - 10 mg/kg IV followed by 1 mg/kg/hr for 24 hours
Revascularization without IV tPA

- **IA Lytics**
 - PROACT-II trial supports benefit from IA pro-urokinase; t-PA is used off label

- **Mechanical Embolectomy**
 - Devices do open vessels and have FDA clearance to open vessels
 - 2 ongoing, 1 completed study to establish clinical efficacy (MERCI, PENUMBRA, IMS-3)
 - Stent retriever trials: Solitaire and Trevo (SWIFT, TREVO) show improved efficacy

Rescue therapy after IV tPA

Interventional Management of Stroke (IMS-III)

- NIH sponsored, randomized, prospective trial of IV t-PA vs. IV t-PA + endovascular
 - 656 stroke events
 - CT scan performed
 - IA t-PA
 - EKOS t-PA
 - MERCI
 - Penumbra
 - Solitaire
 - Outcome: 90-Day mRS

58 study centers
6 years

Broderick et al., NEJM, March 2013
Acute stroke interventions

- **IV tPA**
 - Proven efficacy
 - Better outcome earlier in all subgroups

- **IA lytics**
 - Proven efficacy
 - Unapproved for IA tPA
 - Earlier is better, <6 hours

- **Embolectomy**
 - Stent retrievers better
 - Solitaire, Trevo, Merci Penumbra all able to recanalize vessels
 - No clinical efficacy data

- **Recue therapy**
 - New trial data no benefit
 - Ongoing trials with new devices

Stroke Revascularization 2013

Acute supportive care post stroke

- **Airway, ventilation, oxygenation**
 - Common saturation <96%
 - Especially with underlying cardiac, pulmonary disease
 - Airway obstruction, aspiration, atelectasis, pneumonia
 - Hypoventilation, Cheyne-Stokes

- To intubate or not??
 - Poor outcome in >50% at 30 days

- **Cardiac monitoring**
 - 24 hours continuous for Afib and other rhythms
 - In cryptogenic stroke, cardiac event monitors

- **Hypotension**
- **Hypovolemia**
- **Hyperthermia**
- **Hypoglycemia**

HTN after Acute Stroke

- Acute HTN is common after acute stroke
- Current guidelines suggest treatment for SBP > 220 mmHg or DBP > 120 mmHg or if evidence of end-organ damage
- With thrombolytic therapy, goal BP < 180/105 mmHg
- Risk of acute deterioration with aggressive reduction of BP
- Blood pressure reduction within 24 hours is associated with poor outcome
 - OR 1.89 per 10% decrease (p=0.047) of poor outcome at 3 months

Neurology 2003; 61:1047-51
Blood pressure goals

- Optimal blood pressure after acute stroke is controversial
- Treat blood pressure cautiously in acute ischemic stroke
 - t-PA limit <185/110 mmHg
 - Lower BP by 15% if exceeds 220/120 mmHg
 - Choice of BP agent is controversial
 - Labetolol and nicardipine don’t raise ICP

Table 6. Potential Approaches to Arterial Hypertension in Acute Ischemic Stroke Patients Who Are Candidates for Acute Reperfusion Therapy

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Management of BP during and after IAP after acute reperfusion therapy to maintain BP at or below 160/100 mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild SBP every 15 minutes for 2 hours from the start of IAP therapy, then every 30 minutes for 4 hours, then every 90 minutes for 18 hours</td>
<td>Manage BP to <160/100 mmHg using either SBP or DBP as appropriate. Increase BP to maintain BP at or below 160/100 mmHg using pressors and observe for symptom resolution.</td>
</tr>
<tr>
<td>Moderate SBP every 15 minutes for 2 hours from the start of IAP therapy, then every 30 minutes for 4 hours, then every 90 minutes for 18 hours</td>
<td>If SBP >160-200 mmHg or diastolic SBP >100-120 mmHg:</td>
</tr>
<tr>
<td>Labetolol 5 mg IV followed by continuous infusion 0.5-1 mg/min, or nicardipine 1 mg IV. Increase up to desired effect over 1.5-2 hours every 5-15 minutes, maximum 15 mg/h.</td>
<td>If BP is not controlled or claudication BP >180 mmHg, consider inhibitors of platelet aggregation.</td>
</tr>
</tbody>
</table>

Ischemic Stroke Penumbra

Induced Hypertension

- Remains experimental
- Consider in specific cases
 - Hypotension unresponsive to fluid resuscitation
 - Fluctuating neurological symptoms with hemodynamic changes
 - Increase BP by 10-20% using pressors and observe for symptom resolution
 - Potential to incorporate perfusion imaging
Induced Hypertension

For
- May increase pial-pial blood flow
- Increase perfusion to the ischemic penumbra
- Is probably safe

Against
- Requires ICU care and central line access
- May cause coronary or gut ischemia
- Could cause cerebral vasoconstriction

Induced Hypertension is Safe

- Retrospective safety study in acute stroke patients
 - 33 controls vs. 30 treated with neosynephrine
 - 10/30 treated patients had BP threshold
 - No increased cardiac morbidity

Evidence for Induced Hypertension

- Koenig, et al. (2006)
 - 100 patients randomized to either induced HTN or standard therapy
 - Used perfusion MRI to select patients with ischemic penumbra (mismatch DWI/PWI)
 - Non-significant decrease in NINDS scores at discharge in treated group, but with longer LOS, ICU time
 - No difference in adverse events

Volume expansion/Hemodilution

- Volume expansion with Dextran, hetastarch, albumin
- No benefit in meta-analysis
- ALIAS: High dose albumin trial stopped
- Awaiting trial data
- Treatment of hypotension with isotonic fluids and pressors
- Devices to augment BP with counterpulsation in trials only
- Vasodilators and hemodilution not recommended
Cerebral Edema

- Severe, life-threatening complication after acute ischemic stroke
- Occurs in 10-20% of anterior circulation strokes
 - Carries a 50-80% mortality when associated with distal carotid or proximal MCA occlusion
- Posterior fossa strokes can present with hydrocephalus and brainstem compression
 - Should be treated with early suboccipital decompression if brainstem is compressed

Malignant Cerebral Edema

- Typically pattern occurs 3-5 days post-infarct, and generally subsides in 2 weeks
- Rarely, edema can occur within 24 hours with signs of early herniation
- Difficult to predict which patients are at risk
 - Evidence of >50% MCA infarct within 12 hours
 - Early sulcal effacement and midline shift
 - Reperfusion injury after thrombolysis
 - Perfusion maps potentially helpful; DEFUSE study

Medical Management

- HOB 30 degrees
- Hyperventilation
 - Goal pCO2 25-30 mmHg
 - Transient, temporizing measure
- Hyperosmolar therapy
 - Mannitol
 - Hypertonic saline
- Hypothermia (33-34 degrees Celsius)
- No role for corticosteroids
Osmolar Therapy

- **Mannitol**
 - Typically bolus over 20 min (0.25-0.5 g/kg every 4-6 hours)
 - Monitor for hypotension and hypovolemia
 - Can precipitate renal failure
 - Less effective at serum osms >320 mmol/dl
- **Hypertonic saline**
 - Infusion of 3% NaCl to maintain serum sodium gradient
 - Bolus of 23.4% NaCl over 20 minutes very effective
 - Less side effects of hypotension, renal failure

Hemicraniectomy in Ischemic Stroke

- Decompressive surgery to decrease mass effect and tissue shift after ischemia is controversial.
- Evidence of benefit in patient populations such as trauma, SDH, mass lesions and posterior fossa strokes
- Meta-analysis showed reduced mortality and improved outcomes with hemicraniectomy for hemispheric strokes

European Pooled Trial

- Prospective pooled analysis of 3 trials of decompressive surgery in malignant MCA infarction
- **DECIMAL, DESTINY, HAMLET**
 - Age 18-60
 - Treatment initiated within 48 hrs of stroke onset
 - Randomized to surgery or conservative Rx
 - N=93 patients
 - Reduced mortality 78-29%

Antithrombotic Therapy for Stroke

- Avoid routine use of IV heparin, IIb/IIIa agents
- Aspirin alone is the only proven strategy within the first 24-48 hours
- Dural sinus thrombosis and arterial dissection may specifically benefit from heparin
Secondary Prevention

- Antiplatelet
 - ASA within 24-48 hours of onset
 - Clopidogrel or asa+persantine first line by discharge
- Anticoagulants
 - Warfarin for atrial fibrillation
 - Target specific oral anticoagulants: dabigatran, rivaroxiban, apixiban

Low molecular weight heparin

- LMWHs and heparinoids reduce the risk of venous thromboembolic events
 - DVT OR 0.27 (CI 0.08-0.96)
 - PE OR 0.34 (CI 0.17-0.69)
- No significant reduction in death and disability OR 0.87 (CI 0.72-1.06)
- Significant increase in major systemic hemorrhages (OR 2.17) but not ICH (OR 1.7)

General ICU Care

- Airway
- Blood pressure, cardiac monitoring
 - Afib 24 hours
- Temperature
 - Treat fever with antipyretics
 - Cooling blankets, endovascular treatments not proven to change outcome
 - Hypothermia is experimental at present
- Infection
 - No antibiotic prophylaxis, but early treatment
 - Avoid foley catheters

Glucose management

- Glucose
 - Treat hypoglycemia (glucose <60 mg/dl) immediately
 - Keep serum glucose 140-180 mg/dL
 - Infusion vs. sliding scale insulin is controversial

Stoke Hyperglycemia Insulin Network Effort
Nutrition

- Assess and document swallowing EARLY
- Discourage rule of NPO X 24 hour as a standard
- NG tube is preferred if swallowing is unsafe
- Start feeds as soon as possible

DVT prophylaxis

- 10% PE related deaths
- Compression devices unless DVT present
- Both SQ unfractioned heparin and LMWH are safe and effective to prevent venous clot and likely PE
- PREVAIL trial favors LMWH over heparin SQ
- Early mobilization: AVERT trial within 24 hours

Stroke Centers

- System approach for stroke shown to improve outcomes
- Pre-printed orders, leadership, QA, connection to community/EMS
- JC accreditation and auditing
- Comprehensive stroke centers with endovacular capability certification started

Guidelines

Stroke

Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

Stroke published online January 31, 2013. Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231. Copyright © 2013 American Heart Association, Inc. All rights reserved. Print ISSN 0049-3224 Online ISSN 1524-4636