Interesting and Important Pediatric Cases

Susannah Kussmaul, MD
Pediatric Infectious Diseases, Kaiser Permanente San Francisco
Assistant Professor, UCSF Pediatric Infectious Diseases

• No disclosures / conflicts of interest

Overview

Case 1
Case: 13 yo w/ fever, sore throat, neck swelling

- 13 yo previously healthy girl seen in urgent care with sore throat 5 days ago, re-presents with fever, neck swelling, and pleuritic chest pain
 - Rapid strep and throat culture negative
 - Current exam: febrile, unilateral neck swelling/pain, peritonsillar fullness w/out exudate, tachypneic, bilateral crackles
 - Labs:
 - WBC 7.5 (5.3 N), plts 64K
 - ESR 62, CRP 54
 - BUN/Cr 36/1.2
 - AST 240, ALT 350
 - Micro: rapid flu and viral panel neg
 - CXR: multiple bilateral airspace opacities; small R effusion
 - Admitted: received ceftriaxone, azithromycin → hypotension, respiratory distress → vancomycin added, transferred to PICU

Lemierre’s Syndrome: Epidemiology

- Decreasing in incidence in antibiotic era
 - 1955: 269 cases
 - 1956: 148 cases
 - 1958-1972: 0 cases
 - 1974-1986: 36 cases (35 with tonsillitis/peritonsilar abscess)
- 14 cases at one children’s hospital (Wisconsin) between 1995-2002
- Typical age 15-27 (range 7-38)
- 60% male

Lemierre’s Syndrome: Features

- Septic thrombophlebitis, usually preceded by pharyngitis, and usually associated with tonsillar/peritonsillar involvement
 - Pathophysiology: direct extension from oropharynx to adjacent structures
- Other possible antecedent conditions:
 - Dental infection
 - Mononucleosis
 - Prior catheter insertion

Lemierre’s Syndrome
Resurgence of a Forgotten Disease

- Characterized by Andre Lemierre (1936) based on 36 cases:
 “To anyone instructed as to the nature of these septicaemias it becomes relatively easy to make a diagnosis on the simple clinical findings, the appearance and repetition several days after the onset of a sore throat, of severe pyretical attacks with an initial rigor and still more certainly the occurrence of pulmonary infarcts and arthritic manifestations make a syndrome that is so characteristic that mistake is almost impossible.”

Lemierre A. Lancet 1936; 1:701-703

Golpe, Postgrad Med, 1999
Lemierre’s Syndrome: Features

- Presenting symptom: **sore throat (33%) > neck mass (23%), neck pain (20%) > others (bone/joint pain, ear pain/otitis, dental pain, orbital pain, GI symptoms)**

- **Pharyngitis to Thrombophlebitis ≤ 1 week**
 - Usually jugular, IVC; rarely portal vein, dural, pelvic vein

- **Metastatic sites**
 - **Pulmonary (97%):** bilateral, usually nodular infiltrates; pleural effusion, empyema, lung abscess, cavitiation
 - **Musculoskeletal:** septic arthritis (16%), osteomyelitis (3%)
 - **Derm:** skin/soft tissue infection (16%)
 - **GI:** Commonly LFTs, rarely liver/splenic abscess
 - **Neuro:** meningitis (3%)
 - **Renal:** infarct (rare)

CT head/neck: peritonsillar abscess

CT head/neck: internal jugular vein thrombus

CT chest: pulmonary septic emboli
Lemierre’s Syndrome: Microbiology

- Usually normal oropharyngeal flora
 - *Fusobacterium necrophorum****
 - *Fusobacterium nucleatum*
 - *Eikenella corroden*
 - *Porphyromonas asaccharolytica*
 - *Streptococcus spp* (S. pyogenes)
 - *Peptostreptococcus spp*
 - *Bacteroides spp*
 - MSSA, MRSA
 - Rare catheter associated pathogens

Lemierre’s Syndrome: Treatment

- Empiric therapy:
 - Beta-lactamase resistant beta-lactam
 - e.g. amp/sulbactam, pip/tazo, tic/clav
 - Carbapenem (e.g. meropenem)
 - Also flagyl, cefoxitin, clindamycin
 - Macrolides (e.g. azithro) do NOT treat *Fusobacterium*
 - Vanco if specific concern for staph, or if central catheter present
 - Duration 4 weeks, minimum 2 weeks IV

Lemierre’s Syndrome: Treatment

- Surgery
 - Recommended for ongoing sepsis, lack of response to antibiotics
 - Catheter removal
 - Drainage of source (e.g. peritonsillar abscess, empyema)
 - Anticoagulation: controversial
 - Generally done if extension of thrombus on therapy
 - Balance between risk of emboli and hemorrhage

Lemierre’s Syndrome: Diagnosis

- Clinical suspicion
 - Oropharyngeal infection
 - Persistent fever
 - Neck swelling/pain
 - Symptoms of metastatic disease/septic emboli
 - (e.g. respiratory symptoms, bone/joint pain)
 - Microbiologic data (anaerobic throat/blood cultures)
 - Imaging: CT neck with contrast, ultrasound, MRI, conventional venography

Lemierre’s vs. Streptococcal Pharyngitis

| Hypothetical Cohort of 1,000,000 patients with pharyngitis, 15-24 years old |
|---------------------------------|------------------------|
| Outcomes, by type of pharyngitis | Events per 1,000,000 patients (%) |
| **Group A Streptococcus** | 100,000 (10%) |
| Acute rheumatic fever | 50 |
| Complex acute rheumatic fever | 5 |
| Death | 1 |
| **Fusobacterium necrophorum** | 100,000 (10%) |
| The Lemierre syndrome | 250 |
| Long-term disability | 20 |
| Death | 11 |

??? Proposed (by others) Guidelines

- Possibly apply to adolescents and young adults
- Treat empirically if at least 3 of the following:
 - Fever
 - Tonsillar exudates
 - Swollen, tender cervical LAD
 - Lack of cough
- Consider change in diagnostics (e.g. anaerobic cultures)
- Empiric treatment with PCN, cephalosporins, clindamycin if allergic
 - No macrolides
- Close follow-up for evolution of symptoms
 - BUT- we don’t know whether early antibiotics prevent Lemierre’s

(my) Recommended Approach

- Usual criteria for group A strep diagnosis and treatment
 - Treat only with microbiologic confirmation
- Use PCN / amox or cephalosporin (or clinda) over macrolides
- If not improved 3-5 days, consider:
 - Mononucleosis: EBV, CMV, acute HIV
 - Peritonsillar/retropharyngeal abscess
 - Lemierre’s, especially if neck swelling/pain (red flag!)
 - Careful exam for evidence of metastatic infection (lungs, neuro exam, bones/joints)
 - Consider anaerobic throat culture
 - Start amox/clav or clindamycin and monitor closely
 - If ill-appearing, aerobic and anaerobic blood cultures, and admit → CT head/neck/chest, IV antibiotics

Sidenote: How can I talk a parent out of unnecessary abx?

- **Antibiotic resistance**
- **Obesity**: OR for being overweight at 3 years was 1.22 (p<0.05) if exposed to antibiotics within 6 months of life (Trasande, 2012)
- **Inflammatory bowel disease**: 84% relative risk increase if antibiotic-exposed (Kronman, 2011)
- **Allergies**: OR 1.59 (95% CI: 1.10, 2.28) for developing allergies by 6 yo, if exposed to antibiotics in first 6 months of life (Murk, 2011)
- **Asthma**: OR 1.52 (95% CI 1.30-1.77) for developing asthma between 3-18 yo, if received antibiotics in the first year of life (Risnes, 2010)
- **Antibiotic-associated diarrhea**: in 5-25% (Walk, 2008) (→ rash)
 - C.difficile
 - AOM: diarrhea in ~50% of antibiotic-treated patients vs. ~35% in untreated (Lieberthal, 2013)
- **Drug reactions**: allergy/anaphylaxis, SJ/TEN, erythema multiforme, fixed drug eruption, drug-induced hypersensitivity syndrome/DRESS (drug reaction, eosinophilia, and systemic symptoms)
Case 2

Drug-induced hypersensitivity / DRESS

- Case 1: 16 yo girl with “septic shock”
 - Medications: 4 weeks prior to admission switched from doxycycline to minocycline for acne
 - 11 days prior to admission: pruritis without rash → in 2 days involved entire body, “dark all over” with “goose-bump” rash
 - Patient self-increased minocycline dose because of the rash
 - Associated symptoms: symmetric facial swelling (neck, tongue, lips, cheeks), fever, rigors, myalgias, decreased appetite, cervical adenopathy. No sore throat or neck pain.
 - Outpatient: Flu/RSV neg, GAS probe neg
 - Continued minocycline throughout
 - In ED: treated for allergic reaction; CT neck showed ?parotitis
 - Fedirle to 105 (rectal) with hypotension → PICU

- Case 2
 - Teenage boy on trimethoprim/sulfa x 3 weeks for cellulitis
 - Facial swelling, periorbital edema, vomiting/diarrhea, high fever (104-105), rash (arm → torso + 4 extremities), scleral injection
 - WBC 13.7 (9% PMNs, 17% lymph, 35% atypical lymph, 10% eos)
 - AST 530, ALT 1391, lipase normal
 - Discontinued drug, admitted for r/o sepsis, home and improving

Punch biopsy:
- Overall... pattern favors hypersensitivity/drug reaction... infiltrate of lymphocytes, plasma cells, neutrophils, and eosinophils...
Symptoms
- Fever
- Malaise
- Diffuse lymphadenopathy
- Rash
 - morbilliform \(\rightarrow\) erythrodermic
 - scarring, papules, bullae, purpura
 - often mucous membrane involvement
- Hepatitis
- Symmetric facial edema (50%)
- Other: arthralgias, pancreatitis, myocandidis

Drug-induced hypersensitivity / DRESS

Characteristics in 124 Probable/Definite Cases of DRESS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Age, mean +/- SD</th>
<th>Male</th>
<th>Liver involvement</th>
<th>Lung involvement</th>
<th>Eosinophils > 0.7 x 10^9/L</th>
<th>Fever > 38.5</th>
<th>Eosinophils</th>
<th>Lymphadenopathy</th>
<th>Atypical lymphocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean +/- SD</td>
<td>40 +/- 21</td>
<td>50%</td>
<td>90%</td>
<td>7%</td>
<td>82%</td>
<td>71%</td>
<td>68%</td>
<td>65%</td>
<td>95%</td>
</tr>
<tr>
<td>Male</td>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver involvement</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung involvement</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils > 0.7 x 10^9/L</td>
<td>82%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever > 38.5</td>
<td>71%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>68%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atypical lymphocytes</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset (wks), mean +/- SD</td>
<td>4.1 +/- 2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (wks), mean +/- SD</td>
<td>7.3 +/- 10.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Epidemiology
- M = F
- Estimated incidence: 1/1000 – 1/10,000 drug exposures

Pathophysiology: interaction with herpesviruses?

Culprits:
- Antiepileptics (esp carbamazepine), allopurinol > sulfonamides, minocycline, vanco, amox/clav, dapsone, flagyl, antiretrovirals, NSAIDs, ACE-inhibitors, beta blockers, antidepressants
- Onset usually within 2-6 weeks of starting the drug
- later than most skin reactions (e.g. SJS within 28 days)

Potentially life-threatening

Treatment: stop the drug; sometimes corticosteroids

Differential diagnosis
- Serum sickness
- Toxic shock
- Viral hepatitis
- Sepsis
- Stevens-Johnson syndrome (SJS)
- Toxic epidermal necrolysis (TEN)
- Autoimmune (e.g. Still's disease, lupus)
- Systemic vasculitis (e.g. Kawasaki disease)

Bottom line: think of this in your patients on medications, including antibiotics
- Can be mild, and can resolve with stopping the drug, but can become severe if exposure continues
- Labs: CBC w/diff (eos, atypical lymphs); LFTs; Cr, lipase
- Skin biopsy helpful

Case 3
4/26/13

Case: 2 yo w/ fever, hip pain

• 2 year-old otherwise healthy boy with 6 days of fever, fussiness presents to urgent care/ED
 – Limp → refusal to bear weight
 – Difficult diaper changes

• Differential diagnosis
 – Trauma (accidental or non-accidental)
 – Slipped capital femoral epiphysis (SCFE)
 – Legg-Calve-Perthes disease
 – Malignancy
 – Juvenile idiopathic arthritis
 – Septic arthritis, osteomyelitis
 – Transient synovitis (formerly toxic synovitis)

Transplant Synovitis vs. Septic Arthritis

• Transient synovitis
 – Most common cause of non-traumatic hip pain in kids
 • Most unilateral; 5% bilateral
 – Typical age: 3-8 years; more likely in boys (2:1 M)
 – Symptoms: pain, limited range of motion, antalgic gait, non-toxic, fever often absent
 – Unclear cause – often a preceding URI
 – Treatment: supportive (NSAIDs)
 – Natural history: gradual resolution in 1-4 weeks

• Septic arthritis
 – Any age, neonates and up; pathogens vary by age group
 – Symptoms: pain, very limited range of motion, refusal to weight-bear, fever, ill-appearing
 – Long-term joint dysfunction in 10-25%

Hip pain: Distinguishing between Transient Synovitis and Septic Arthritis

Kocher criteria

1. fever >38.5 (oral)
2. non-weight bearing
3. ESR > 40 mm/hr
4. WBC > 12K

Kocher Criteria

<table>
<thead>
<tr>
<th>No. of Predictors</th>
<th>Transient Synovitis (N=48)</th>
<th>Septic Arthritis (N=42)</th>
<th>Predicted Probability of Septic Arthritis (genital)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10 (21.1%)</td>
<td>0 (0%)</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>17 (34.7%)</td>
<td>1 (2.4%)</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>18 (37.5%)</td>
<td>2 (4.8%)</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>4 (8.2%)</td>
<td>4 (9.5%)</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0 (0%)</td>
<td>35 (80.5%)</td>
<td>0.8</td>
</tr>
</tbody>
</table>

TABLE V. Distribution of Number of Multivariate Predictions and Associated Algorithms for the Predicted Probability of Septic Arthritis

Kocher Criteria – modified (CRP added)

<table>
<thead>
<tr>
<th>No. of Predictors</th>
<th>Probability of Septic Arthritis Based on Number of Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T > 38.5, non-weight bearing, ESR > 40, WBC > 12K, CRP > 2 mg/dL, 20 mg/L)</td>
</tr>
<tr>
<td>0</td>
<td>Notes</td>
</tr>
<tr>
<td>1</td>
<td>Kocher, 1999 0%</td>
</tr>
<tr>
<td>2</td>
<td>Kocher, 2004 2%</td>
</tr>
<tr>
<td>3</td>
<td>Kocher, 2005 5%</td>
</tr>
<tr>
<td>4</td>
<td>Kocher, 2006 10%</td>
</tr>
<tr>
<td>5</td>
<td>Kocher, 2007 15%</td>
</tr>
</tbody>
</table>

Notes

Transient Synovitis vs. Septic Arthritis

- Bottom line: use the Kocher criteria, but interpret with caution
 - CRP particularly useful if NEGATIVE:
 - Levine et al, 2003: if CRP < 1 mg/dL, 13% probability of SA
 - Caird et al, 2006: if CRP < 2 mg/dL, 15% probability of SA
 - When unsure – get the sono, call ortho, tap the joint

Case: 2 yo w/ fever, hip pain
Back to our patient:
- CBC 18>12.2<1050 (51% PMN, 43% lymph, 0 bands)
- ESR 100 (ref 0-20 mm/hr)
- CRP 0.6 (ref <0.5 mg/dL)
 Kocher criteria: 4 present >60% probability of SA
- UA negative
- Urine and blood cultures sent (neg)
- Bilateral hip x-ray: no fracture or dislocation, no lytic or blastic lesions, no definite joint space asymmetry
- Bilateral hip ultrasound: small L hip effusion
- Arthrocentesis: 58,000 WBCs (97% PMNs)

Osteomyelitis and septic arthritis in children:
anatomical considerations
- Septic arthritis usually hematogenous in children
- Osteo \rightarrow septic arthritis common
- Septic arthritis \rightarrow osteomyelitis unlikely

Case: 2 yo w/ septic arthritis of hip
- Management:
 - Admit, ortho consult (or transfer to facility with ortho)
- Who needs surgical drainage for SA?
 - Hip: always \rightarrow risk of avascular necrosis of femoral head
 - Other joints: not necessarily
 - May require \(\geq 1 \) aspiration if reaccumulates
- Next steps in management – IMPORTANT
 - Adjunctive therapy to improve outcomes in pediatric septic arthritis:
 STEROIDS!!! (give before antibiotics)
Why try this?
- Residual joint dysfunction in 10-25% of children with septic arthritis
- Cytokine levels in joints correlate with severity of inflammation
- Animal data show decreased inflammation and arthritis in H. influenzae (rabbits) and S. aureus (mice)
- Analogous to use of steroids in meningitis → blunt the inflammatory response triggered by administering antibiotics

Do the data support this?
- Yes: 2 double-blind RCTs

Steroids for Hematogenous Septic Arthritis

UCSF PROTOCOL

1. Obtain baseline CBC with diff, blood culture, ESR and CRP
2. Obtain joint aspiration **BEFORE** giving steroids and antibiotics**
3. Administer IV dexamethasone **BEFORE** administering IV antibiotics
 - Ideally 30 minutes prior; may also be given concurrently, or up to 2 hours after antibiotics
 - Dose: IV dexamethasone 0.15 mg/kg/dose IV q6 hours x 4 days
4. Administer IV antibiotics

Case: 2 yo w/ septic arthritis of hip

- Why try this?
 - Residual joint dysfunction in 10-25% of children with septic arthritis
 - Cytokine levels in joints correlate with severity of inflammation
 - Animal data show decreased inflammation and arthritis in H. influenzae (rabbits) and S. aureus (mice)
 - Analogous to use of steroids in meningitis → blunt the inflammatory response triggered by administering antibiotics

- Do the data support this?
 - Yes: 2 double-blind RCTs

UCSF PROTOCOL

1. Obtain baseline CBC with diff, blood culture, ESR and CRP
2. Obtain joint aspiration **BEFORE** giving steroids and antibiotics**
3. Administer IV dexamethasone **BEFORE** administering IV antibiotics
 - Ideally 30 minutes prior; may also be given concurrently, or up to 2 hours after antibiotics
 - Dose: IV dexamethasone 0.15 mg/kg/dose IV q6 hours x 4 days
4. Administer IV antibiotics

Case: 2 yo w/ septic arthritis of hip

- Why try this?
 - Residual joint dysfunction in 10-25% of children with septic arthritis
 - Cytokine levels in joints correlate with severity of inflammation
 - Animal data show decreased inflammation and arthritis in H. influenzae (rabbits) and S. aureus (mice)
 - Analogous to use of steroids in meningitis → blunt the inflammatory response triggered by administering antibiotics

- Do the data support this?
 - Yes: 2 double-blind RCTs

Table: Comparison of Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Antibiotics</th>
<th>Follow-up</th>
<th>Pathogens</th>
<th>Outcomes in steroid group (primary/secondary)</th>
<th>Reasons to remember this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odoo, Ped ID 2003</td>
<td>100 children 6 mo - 12 yr Groups comparable</td>
<td>Dexamethasone 0.6 mg/kg/day divided q 4 days</td>
<td>Uniform emetic antibiotics, by age</td>
<td>End of treatment, 6 mo, 12 mo</td>
<td>Identified in 90%</td>
<td>Less residual dysfunction (p<0.001)</td>
<td>Many providers do not know about these studies</td>
</tr>
<tr>
<td>Harel, J Ped Ortho 2011</td>
<td>49 children 6 mo -13 years Groups comparable</td>
<td>Dexamethasone 0.6 mg/kg/day divided q4 days</td>
<td>Uniform emetic antibiotics (cefuroxime)</td>
<td>End of treatment, 2 mo, 6 mo, 12 mo</td>
<td>Identified in 35%</td>
<td>Faster resolution of fever (p<0.05)</td>
<td>Urgent care / ED providers have the opportunity to bring steroids into the equation</td>
</tr>
</tbody>
</table>

UCSF PROTOCOL

1. Obtain baseline CBC with diff, blood culture, ESR and CRP
2. Obtain joint aspiration **BEFORE** giving steroids and antibiotics**
3. Administer IV dexamethasone **BEFORE** administering IV antibiotics
 - Ideally 30 minutes prior; may also be given concurrently, or up to 2 hours after antibiotics
 - Dose: IV dexamethasone 0.15 mg/kg/dose IV q6 hours x 4 days
4. Administer IV antibiotics

Case: 2 yo w/ septic arthritis of hip

- Why try this?
 - Residual joint dysfunction in 10-25% of children with septic arthritis
 - Cytokine levels in joints correlate with severity of inflammation
 - Animal data show decreased inflammation and arthritis in H. influenzae (rabbits) and S. aureus (mice)
 - Analogous to use of steroids in meningitis → blunt the inflammatory response triggered by administering antibiotics

- Do the data support this?
 - Yes: 2 double-blind RCTs

UCSF PROTOCOL

1. Obtain baseline CBC with diff, blood culture, ESR and CRP
2. Obtain joint aspiration **BEFORE** giving steroids and antibiotics**
3. Administer IV dexamethasone **BEFORE** administering IV antibiotics
 - Ideally 30 minutes prior; may also be given concurrently, or up to 2 hours after antibiotics
 - Dose: IV dexamethasone 0.15 mg/kg/dose IV q6 hours x 4 days
4. Administer IV antibiotics

Case: 2 yo w/ septic arthritis of hip

- Why try this?
 - Residual joint dysfunction in 10-25% of children with septic arthritis
 - Cytokine levels in joints correlate with severity of inflammation
 - Animal data show decreased inflammation and arthritis in H. influenzae (rabbits) and S. aureus (mice)
 - Analogous to use of steroids in meningitis → blunt the inflammatory response triggered by administering antibiotics

- Do the data support this?
 - Yes: 2 double-blind RCTs
Kawasaki Disease (KD): Background

- Vasculitis that typically occurs in healthy children
 - 25% of untreated children develop coronary artery abnormalities
 - KD is the common cause of acquired heart disease in developed world

- Most commonly ages 6 months – 5 years
 - Japanese: KD in 1% by 5 years of age

- Cause unknown → ?infectious agent
 - Winter/spring predominance in temperate climates
 - Apparent “outbreaks” with wavelike spread

- Probably a combination of exposure to an infectious agent in predisposed individuals

Case: Is this Kawasaki Disease?

- Don’t leave! This can happen in adults, too
 - 2010, Gomard-Mennesson et al: another case series found an additional 27 cases

- For adults – a zebra, but important to know about

- For kids – not a zebra, though we think about it a lot more than we diagnose it

- Easy to recognize when classic
 - More often get questions about “incomplete” Kawasaki – how to recognize, diagnose, and monitor

Classic Kawasaki Manifestations

“CRASH and Burn”

5 days fever
Plus 4 out of 5:
1. Conjunctivitis
2. Rash
3. Adenopathy (cervical)
4. Strawberry tongue (lips/oral cavity changes)
5. Hands/feet (changes in extremities)

* Manifestations often not present simultaneously → role for watchful waiting

Used with permission: Maen Housset, 2011
Kawasaki Disease: Treatment

- **IVIG**
 - 2 g/kg given over 10-12 hours
 - Ideally given within 10 days
 - 10% with continued fever → usually respond to 2nd dose IVIG
 - 80-100 mg/kg/day divided q6
 - Drop to 3-5 mg/kg/day after 2 weeks
 - Continued for 6-8 weeks until ECHO rules out coronary artery problems
- **High dose aspirin**
 * IVIG + aspirin → 5% risk of CAD (25% if untreated)
- **Steroids**
 - Not first line therapy: no benefit
 - Possible role in refractory cases

Case: Is this Kawasaki?

4 year-old boy with high fever (104) x 5 days, plus:

- Red, cracked lips
- Rash on arms/legs/cheeks
- Eye redness
- Abdominal pain
- Rhinorrhea
- Cough
- Overall well-appearing; not irritable

<table>
<thead>
<tr>
<th>Favors Kawasaki</th>
<th>Does not favor Kawasaki</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case: Is this Kawasaki?

- **4 year-old boy with high fever (104) x 5 days, plus:**
 - Labs reassuring: ESR and CRP elevated but CBC, albumin, ALT, UA normal
 - Red, cracked lips
 - Rash on arms/legs/cheeks
 - Eye redness
 - Abdominal pain
 - Rhinorrhea
 - Cough
 - Overall well-appearing; not irritable

Favors Kawasaki

Does not favor Kawasaki

Important points:
- Infants at high risk for bad outcomes
 - Get labs if 7 days of fever, even without other KD symptoms
 - Can diagnose before 5 days of fever if 4 or more classic criteria present
 - Use the AHA algorithm; watchful waiting and repeating labs may be appropriate
 - Very elevated platelets should increase your suspicion for KD
 - Characteristics very suggestive of KD – look carefully:
 - Limbic-sparing conjunctivitis
 - Perineal desquamation
 - Lack of exudative pharyngitis, hand-foot-mouth, etc…
 - Pitfalls:
 - Antibiotics for cervical adenitis → mouth changes → presumed drug rxn
 - Sterile pyuria as culture negative (or pre-treated) UTI
 - Aseptic/viral meningitis because of fever, rash, CSF pleocytosis

Differential diagnosis – ID:
- Measles
- Other viral infections:
 - EBV, adenovirus, enterovirus (e.g. Coxsackie)
- Leprosy
- Rickettsial disease (e.g. Rocky Mountain spotted fever)
- Scarlet fever
- Staphylococcal scalded skin syndrome
- Toxic shock
- Bacterial cervical lymphadenitis

Differential diagnosis – non-ID:
- Drug hypersensitivity reactions (e.g. DRESS!)
- Stevens-Johnson syndrome
- Systemic onset JIA
- Mercury hypersensitivity reaction (acrodynia)

Evaluation of Suspected Incomplete Kawasaki Disease (KD):

- **Newburger et al, Kawasaki Guidelines, Pediatrics 2004**
Case: Is this Kawasaki?

“Kawasaki disease should be considered in the differential diagnosis of every child with a fever of at least several days’ duration, rash, and nonpurulent conjunctivitis, especially in children < 1 year old and in adolescents, in whom the diagnosis is frequently missed.”