Integrative Cancer Care: Rational Use of Natural Supplements

Donald I. Abrams, M.D.
Chief, Hematology-Oncology
San Francisco General Hospital
Integrative Oncology
UCSF Osher Center for Integrative Medicine
Professor of Medicine, UCSF

Integrative Oncology

“It is more important to know what sort of patient has a disease than what disease a patient has.”

Moses Maimonides and Sir William Osler

What is Integrative Oncology?

The rational, evidence-based combination of conventional therapy with complementary interventions into an individualized therapeutic regimen that addresses the whole person (body, mind, spirit) with cancer

Integrative Oncology

- Provides relationship-centered care
- Integrates conventional and CAM methods of treatment and prevention
 - Aims to activate the body’s innate healing response
 - Uses natural, less invasive interventions when possible
Let your food be your medicine
And your medicine be your food
Hippocrates

Proportion of Cancer Deaths Caused by Different Avoidable Cancers

<table>
<thead>
<tr>
<th>Causes</th>
<th>Percent '1981(US)*</th>
<th>Percent '1998(UK)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco</td>
<td>25-40</td>
<td>29-31</td>
</tr>
<tr>
<td>Diet</td>
<td>10-70</td>
<td>20-50</td>
</tr>
<tr>
<td>Medicines</td>
<td>0.3-1.5</td>
<td><1</td>
</tr>
<tr>
<td>Infection: parasites, bacteria, viruses</td>
<td>10</td>
<td>10-20</td>
</tr>
<tr>
<td>Ionizing and UV light</td>
<td>2-4</td>
<td>5-7</td>
</tr>
<tr>
<td>Occupation</td>
<td>2-8</td>
<td>2-4</td>
</tr>
<tr>
<td>Pollution: air, water, food</td>
<td><1-5</td>
<td>1-5</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td></td>
<td>1-2</td>
</tr>
</tbody>
</table>

* Doll and Peto, 1981; ** Doll, 1998

ACS Comments on Supplements

“There is strong evidence that a diet rich in vegetables, fruits and other plant-based foods may reduce the risk of cancer, but there is no evidence at this time that supplements can reduce cancer risk, and some evidence exists that indicates that high-dose supplements can increase cancer risk.”

Kushi et al, CA, 2006

• Poison is in everything and no thing is without poison.
• The dosage makes it either a poison or a remedy.
 • Paracelsus
 • 1493-1541
Nutritional Risk Reduction Strategies

Eat More:
- Phytoestrogens
- Cruciferous vegetables
- Garlic and onions
- Turmeric and ginger
- Asian mushrooms
- Green tea
- Omega 3 fatty acids
- Vitamin D

Vitamin D3 (Cholecalciferol)
- A vitamin with hormone-like action
- Controls phosphorus, calcium and bone metabolism and neuromuscular function
- The only vitamin the body can manufacture from sunlight
- Increasing percentage of population now deficient b/o indoor living, heliophobia and sunscreen use

Vitamin D3 (Cholecalciferol)
- Long recognized as involved in bone health, but now felt to be linked to:
 - Depression
 - Back pain
 - Cancer (Breast, prostate, colon, pancreas)
 - Insulin resistance
 - Impaired immunity
 - Macular degeneration
 - Pre-eclampsia

Vitamin D and Colon CA Risk
- European Prospective Investigation into Cancer and Nutrition (EPIC)
- 52,000 participants from Denmark, France, Greece, Germany, Italy, Spain and the UK
- 1248 incident CRC cases c/w 1248 controls
- Strong inverse association between pre-dx vitamin D levels and CRC risk
 - < 25 nmol/l associated with higher risk
 - > 100 nmol/l associated with lower risk
 - Higher consumption of dietary vitamin D not associated with a reduced risk
 - Optimal level of vitamin D supplementation unknown

Jenab et al, BMJ 2010
Vitamin D in Colon Cancer

- Retrospective study of baseline vitamin D levels in newly dx’ed Stage IV CRC
- Stored specimens collected 2005-2006
- 153 of the patients had died by April 2009
- Median vitamin D level all pts- 21.5 ng/mL
 - 83% total pts were deficient (< 30 ng/mL)
 - Only 7 pts > 40 ng/mL
- Pts with low vitamin D had survival outcomes 1.5 times worse than those with nl levels
- Unknown whether aggressive vitamin D replacement would improve outcomes

Wesa et al, ASCO 2010

Vitamin D and Breast Cancer

- 194 women treated for Stage 0-III breast cancer in Rochester who had vitamin D levels drawn within 3 mos of surgery
- Patients matched 1:1 with concurrent cancer-free controls
- Optimal > 32 ng/mL, suboptimal 20-31 ng/mL, deficient < 20 ng/mL

Skinner et al 2011

Vitamin D and Breast Cancer

- Breast CA patients mean 33 ng/mL vs 37 ng/mL; twice as likely to be deficient (OR 2.4, p < .01)
- Mean vitamin D levels lower in:
 - ER neg vs ER pos (28 ng/mL vs 33; p=.04)
 - Triple-neg vs not (26 ng/mL vs 33 ng/mL; p=.02)
 - Basal-like (triple neg) vs luminal A (ER+/PR+/her2-) phenotype (24 ng/mL vs 33 ng/mL; p=.04)

Skinner et al, 2011

Vitamin D and AI Bone Loss

- Intervention study in 156 postmenopausal nonosteooporotic women (mean age 62) receiving AI’s for adjuvant Rx in early stage breast CA
- All pts received daily oral calcium 1000 mg and vitamin D3 800 IU (additional D if < 30 ng/mL at baseline)
- Each 10 ng/mL increase in 25-OH-vitamin D at 3 mos associated with a 0.55% decrease in bone loss

Smith et al 2011
Fish as Source of Vitamin D

- Sockeye salmon 687 IU
- Albacore tuna 544 IU
- Silver salmon 430 IU
- King salmon 236 IU
- Sardines 222 IU
- Sablefish 169 IU
- Halibut 162 IU

Per 3.5 oz serving

Dietary Sources of Omega-3 Fatty Acids

Animal Sources (DHA and EPA)
- Oily, cold water fish
 - Herring 1700
 - Salmon 1600
 - Mackeral 1400
 - Flounder 500
 - Halibut 500
 - Tuna 300
 - Cod 200
 - Catfish 200

Vegetarian Sources (α-linolenic acid)
- Nuts (English walnuts)
- Flaxseeds
- Soy
- Vegetable oils
 - Canola
 - Flaxseed
 - Olive

Omega 3 vs Omega 6 Fatty Acids

Dietary Sources of Omega-3 Fatty Acids

Animal Sources (DHA and EPA)
- Oily, cold water fish
 - Herring 1700
 - Salmon 1600
 - Mackeral 1400
 - Flounder 500
 - Halibut 500
 - Tuna 300
 - Cod 200
 - Catfish 200

Vegetarian Sources (α-linolenic acid)
- Nuts (English walnuts)
- Flaxseeds
- Soy
- Vegetable oils
 - Canola
 - Flaxseed
 - Olive
Omega-3 Fatty Acid Intake

- Dietary intake of Ω-3’s decreased 80% over past century
- Intake of Ω-6’s has increased
- Higher ratio of Ω-6/Ω-3 contributes to greater inflammation
- Inflammation now felt to be related to development of cardiac disease, cancer, Alzheimer’s and other degenerative diseases

Fats, Fatty Acids and Prostate CA

- Preclinical studies had suggested that ↓ dietary fat and ↓ n-6:n-3 lowers risk and slows progression of prostate cancer
- 48 men undergoing radical prostatectomy
- Randomized to low fat (15%) diet and 5 gm fish oil (n-6:n3 2:1) or control Western diet (40% fat, n6:n3 15:1) for 4-6 wks pre-op
- Food prepared by UCLA chefs
- Serum IGF-1 levels selected as primary endpoint

Aronson et al, 2011

Fats, Fatty Acids and Prostate CA

- No effect on serum IGF-1 levels
- Low fat, high n-3 group had:
 - Lower omega-6:omega-3 ratios in blood and prostate
 - Less prostate tissue (benign and malignant)
 - Reduced cancer cell proliferation (Ki-67 index)
 - Reduced prostate cancer cell proliferation in vitro with their blood added c/w controls

Aronson et al, 2011

Fish Oil in Lung Cancer

- Preclinical studies suggest fish oil omega 3 fatty acids (EPA and DHA) may enhance activity of a number of chemotherapeutic agents vs a variety of tumor types
- As mechanisms of actions of the agents vary, suggests fish oil modulates via diverse mechanisms
- EPA and DHA may also inhibit angiogenesis and metastasis

Murphy et al, Cancer 2011
Fish Oil in Lung Cancer

- 46 NSCLC patients (IIIB or IV) receiving first-line platinum-based doublet palliative chemotherapy
- Participants chose to enroll in open-label trial of nutritional intervention with fish oil (2.2 gm EPA and 240-500 mg DHA) or SOC
- Baseline characteristics well matched (64 yo, 77% Stage IV, BMI 26.5, ECOG 1)
- Plasma phospholipids EPA and DHA increased significantly after supplementation

Murphy et al, Cancer 2011

<table>
<thead>
<tr>
<th></th>
<th>SOC (n=31)</th>
<th>Fish Oil (n=15)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response</td>
<td>1 (3.2%)</td>
<td>1 (6.7%)</td>
<td></td>
</tr>
<tr>
<td>Partial Response</td>
<td>7 (22.6%)</td>
<td>9 (60%)</td>
<td></td>
</tr>
<tr>
<td>Stable Disease</td>
<td>5 (16.1%)</td>
<td>2 (13.3%)</td>
<td></td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>18 (58.1%)</td>
<td>3 (20.0%)</td>
<td></td>
</tr>
<tr>
<td>Response Rate (CR/PR)</td>
<td>8 (25.8%)</td>
<td>9 (60.0%)</td>
<td>.008</td>
</tr>
<tr>
<td>Benefit (CR/PR/SD)</td>
<td>13 (41.9%)</td>
<td>12 (80%)</td>
<td>.02</td>
</tr>
<tr>
<td>Chemo cycles received</td>
<td>3.0 ± 1.4</td>
<td>3.9 ± 0.9</td>
<td>.02</td>
</tr>
<tr>
<td>Days on chemotherapy</td>
<td>60.3 ± 31.1</td>
<td>78.9 ± 23.5</td>
<td>.05</td>
</tr>
<tr>
<td>1-Year survival</td>
<td>38.7%</td>
<td>60.0%</td>
<td>.15</td>
</tr>
</tbody>
</table>

EPA concentration after supplementation significant predictor of response

Murphy et al, Cancer 2011

Turmeric- The Anticancer Spice

- *Curcuma longa* L, family Zingiberaceae
- Cultivated in Asia for culinary and medicinal purposes for centuries
 - In Ayurveda, used internally for digestive problems and is considered a blood purifier and antimicrobial; externally for skin problems
 - In TCM, invigorates *xue* (blood); relieves pain related to liver (*Gan*); clears heat and cools the blood; benefits the gallbladder (*Dan*)
- Commission E: symptoms of mild digestive disturbances and minor biliary dysfunction

Turmeric- The Anticancer Spice

- Purported properties
 - Antioxidant
 - Anti-inflammatory
 - Chemopreventive
 - Antimutagenic
 - Anticarcinogenic
 - Antimetastatic
 - Antiangiogenic
 - Cardioprotective
Turmeric- The Anticancer Spice

- Appears to have potential as chemopreventive agent for colon and pancreatic cancers
- Two of 21 evaluable pts in Phase II trial in pancreatic cancer showed clinical biological activity (Dhillon, Clin Cancer Res 2008)
- Safe with gemcitabine but <10% pts with objective response (Bar-Sela, Curr Med Chem 2010)
- Appears synergistic with docetaxel vs lung cancer in vitro and in vivo (Yin, Acta Biochim Biophys Sin)

Curcuminoids (diferuloylmethanes) include curcumin and its methoxylated derivatives
- Curcumin has extremely low bioavailability
- Piperine increases bioavailability 2000%
- Weakly inhibits induction and activity of CYP450 1A1, 1A2, 2B1, 2B2, 2E1
- Pronounced inhibitory effects on P-glycoprotein noted

Turmeric-Chemo Interactions

- Bleomycin: may ↓ pulmonary toxicity
- Cisplatin: may ↓ renal and neurotoxicities
- Cyclophosphamide: may ↓ toxicity and effectiveness
- Doxorubicin: may ↓ toxicity and possible effectiveness
- Taxanes: may chemosensitize malignant cells
- Vincas: may ↓ drug resistance by inhibiting efflux mechanisms

Herb, Nutrient, and Drug Interactions by Stargrove, Treasure and McKee
History of Medicinal Mushrooms

- Hot water decoctions from certain fungi long recognized to have health promoting effects, particularly in Eastern cultures
- ~300 species felt to have therapeutic potential, important in Asian cuisine and as folk medicines
- Crossover to West stimulated by:
 - Cancer epidemiology of *Flammulina velutipes* (enokitake) farmers
 - Isolation of specific active constituents
 - Superior organoleptic properties to dominant *Agaricus*
 - Multimillion $ US market for edibles and medicinals

Mechanism of Immune Action

- β-glucans resemble molecules on bacterial cell walls
- β-glucans complex with complement on macrophages, mobilizing immune response
- When ingested into macrophages, β-glucans stimulate cytokines active in tumor inhibition, i.e. IFN-γ, TNF-α, IL-2 and IL-12
- Differently branched glucans from different species stimulate T cells, NK cells or others
Anti-Cancer Activities

- Most mushrooms work as non-specific immuno-stimulants, enhance host response
- Activity may require intact T cell function
- Activity especially beneficial when used in conjunction with chemotherapy
- Some may have direct cytotoxic effects
- Most clinical trials and licensed drugs are in Asia; more studies needed

Trials of Mushrooms in Cancer: Issues in Design and Interpretation

- Information derived from:
 - In vitro effects
 - Animal models
 - Human trials
 - Epidemiologic observations
- Mushroom products studied:
 - Whole mushrooms: eaten, encapsulated or extracted
 - Mycelia or fruiting bodies
 - Extracts
 - Water: hot or cold
 - Ethanol
 - Isolated fractions

Agaricus species

- *Agaricus blazei* most common CAM Rx in Japanese cancer patients
- *Agaricus bisporus* may have aromatase inhibitor activity
 - Significance of agaritine in raw button mushrooms unclear
 - ALL mushrooms must be cooked before eating !!!

Lentinus edodes

- Shiitake
- Xiang gu (Fragrant mushroom)
- LEM
- *Lentinus edodes* mycelium
- Lentinan
 - Cell wall constituent extracted from fruiting bodies or mycelium
 - Widely used as adjuvant immunotherapy in Japan
 - High MW precludes oral administration
- Active Hexose Correlated Compound base
Grifola frondosa
- Maitake
- Hen of the woods
- D-fraction
 - Found in mycelia and fb
 - Standardized β-1,3 and β-1,6 glucan fraction
 - MD-fraction is a more purified extract
 - Adaptogen and immunomodulator
 - May ↓ chemo side effects

Hericium species
- May stimulate brain derived nerve growth factor
 - Could be considered as a neuroprotective agent vs chemo-induced neuropathy
 - Possible use in chemo-induced cognitive impairment
 - Human studies needed!

Trametes versicolor
- AKA Coriolus, Polyporus
- Turkey tail mushroom
- Yun Zhi (Cloud fungus)
- 2 proteoglycans
 - PSK (Krestin)
 - PSP
- Widely used adjuvant Rx in Japan and China
 - 25% of cancer care cost in Japan
 - Positive RCTs in GI (esp stomach) and breast

Ganoderma lucidum
- Reishi
 - 10,000 year mushroom
- Ling Zhi
 - Mushroom of immortality
- Polysaccharides immune enhancing activity
- Ganoderic acid triterpenoids inhibit tumor cell growth
- Worldwide extract sales 1.5 billion annually
Cordyceps sinensis

- Used for vigor and stamina
- Lung and kidney tonic
- Restores immune activity with chemoRx
- Prolonged survival of mice receiving chemoRx
- May also improve anemia from chemoRx

Mushrooms and Green Tea

- Case control study in SE China 2004-2005
- 1009 women with confirmed breast CA and 1009 age-matched controls
 - Compared with non-consumers
 - OR 0.36 (95% CI 0.25, 0.51) for daily intake > 10g fresh mushrooms
 - OR 0.53 (95% CI 0.38, 0.73) for daily intake > 4g dried mushrooms
 - ORs 0.11 and 0.18 for fresh and dried in combo with >1.05g dried green tea leaf beverages/day
 - Effects seen in pre and post-menopausal women

Zhang et al, Int J CA, 2009

Cannabis sativa

Marijuana as Medicine

- Contains over 400 chemical compounds
- Highest concentration of bioactive compounds in resin exuded from flowers of female plants
- Main psychoactive component believed to be delta-9-THC
- At least 70 other cannabinoids identified in pyrolysis products
- delta-8-THC similar in potency but only in small concentration
Non-THC Components of Marijuana

- ∆9-tetrahydrocannabinol (THC) is the primary active ingredient of cannabis
- Secondary compounds may enhance the beneficial effects of THC
- Other cannabinoid and non-cannabinoid compounds may reduce THC-induced anxiety, anticholinergic effects and immunosuppression
- Terpenoids and flavonoids may increase cerebral blood flow, enhance cortical activity, kill respiratory pathogens and provide anti-inflammatory activity

Cannabis as an Anti-Cancer Agent

- Increasing body of preclinical evidence suggests cannabinoids may have activity
- Anti-oxidant and anti-inflammatory effects
- Possibility of anti-tumor activity via cannabinoid receptors inducing apoptosis and impairing tumor vascularization
- Gliomas and skin tumors seem responsive in animal models

Symptom Management Challenges Associated with Cancer and Its Treatments

![Graph showing symptom management challenges](image)

Cannabis as an Anti-Cancer Agent

- Increasing body of preclinical evidence suggests cannabinoids may have activity
- Anti-oxidant and anti-inflammatory effects
- Possibility of anti-tumor activity via cannabinoid receptors inducing apoptosis and impairing tumor vascularization
- Gliomas and skin tumors seem responsive in animal models

Other Potential Cannabinoid Anti-Tumoral Actions in Gliomas

- Cannabinoids reduce angiogenesis and invasion
- Promote differentiation and reduce cell cycle activity

Cannabinoids and Cancer

- Cannabinoid administration to nude mice curbs growth of various tumor xenografts
 - Lung carcinoma
 - Thyroid epithelioma
 - Lymphoma
 - Skin carcinoma
 - Glioma

Velasco Neuropharmacology 04

Cannabinoids and Cancer

- In cultured glioma cells, incubation with cannabinoids induces cell death via apoptosis
- Local administration of THC or WIN-55,212-2 reduced the size of tumors generated by intracranial inoculation in rats
- In engrafted tumor cells, cannabinoids effective vs GBM cells from patients
- Ongoing Spanish trial of local administration of THC in recurrent GBM

Velasco Neuropharmacology 04

Cannabinoids and Cancer: Human Studies

- Pilot phase I study administered THC intratumorally to 9 pts with recurrent GBM
 - Dose escalation study
 - Median survival 24 wks
 - Tumor cell proliferation decreased in vitro
 » Guzman et al, Br J Cancer, 2006
- PK study in cancer pts receiving irinotecan (12) or docetaxel (12)
 - Cannabis administered as herbal tea x 15d
 - Exposure to and clearance of chemo not Δed
 » Engels et al, Oncologist, 2007

Doc, Can I Take This?

Photo by Lawenda
Herb-Drug Interactions: CYP3A4

Anticancer Agents
- Camptothecins
- Cyclophosphamide
- EGFR-TK inhibitors
- Epipodophyllotoxins
- Taxanes
- Vinca alkaloids

Herbal Products
- CYP3A induction
 - SJW
 - Echinacea
 - Grape seed
 - Kava
 - ?Garlic
- CYP3A inhibition
 - Gingko

The Great Antioxidant Debate

- Antioxidants may interfere with the mechanism of action of cytotoxic chemotherapy or radiotherapy
- Oxidation supports malignant proliferation
- Use of antioxidants causes diminished treatment effect and protection of tumor
- Oxidation may interfere with standard Rx, diminishing therapeutic benefit
- Antioxidants improve Rx efficacy and protect from toxicity of treatments

Antioxidants and Chemo: Teams

Strongly Oxidative Chemo
- Cisplatin, et al
- Alkylating agents
 - Cyclophosphamide
 - Ifosfamide
 - Melphalan
- Antitumor antibiotics
 - Doxorubicin
 - Daunorubicin
 - Bleomycin

Useful Antioxidants
- Vitamin A, C, E
- Selenium
- Melatonin
- N-acetylcysteine
- Glutathione
- C0-Q 10
- Alpha-lipoic acid

Antioxidants and Chemo: Systematic Review

- 17/19 RCTs showed either significant advantage or non-stat increase in survival or Rx response
 - All 13 reports with survival showed similar or benefit to AOs (4 stat sig)
 - 16/17 reports with overall response rate with similar or benefit to AOs (2 stat sig)
 - 15/17 reports with toxicity showed similar or reduced with AOs (3 stat sig)
- No evidence of diminished chemo effect

Block et al, CA Treat Rev 2007
My Antioxidant Approach

- Individual advice depends on goal of Rx
 - If cure, err on side of caution
 - Delay antioxidants until end of Rx
 - Discontinue day before, of, after chemo cycle
 - Antioxidant rich foods probably ok
 - If palliation, encourage use for protection of normal tissue, optimization of QOL
- Antioxidant radio- and chemoprotectants (mesna, amifostine) do not interfere with anti-tumor effects of Rx

"The role of the physician is to cure sometimes, heal often, support always."
Ambroise Pare