Obesity and Bone Health

Anne Schafer, MD
Assistant Professor of Medicine
Division of Endocrinology & Metabolism
June 13, 2013

No conflicts of interest

Addressing the skeletal health of an increasingly obese population

• Low body weight is an established risk factor for fracture
• However, a large proportion of the elderly is overweight or obese
 ▫ 34% of women and 37% of men ≥60 y.o. have BMI ≥30 kg/m²

How do we approach the skeletal health of obese patients?

Case

65 y.o. woman presents for routine follow-up and healthcare maintenance
• PMH: Obesity, type 2 DM, HTN
• 5’5”, 240 lbs. (BMI 40 kg/m²)
• No family hx osteoporosis
• Hx ankle fracture 10 years ago

Needs mammogram, colonoscopy . . .

Refer for DXA for routine BMD screening?
Objectives

- Describe the epidemiology of obesity and fracture
- Identify mechanisms that may link adiposity to bone health and fracture risk
 - Regional deposition of fat tissue
- Recognize challenges in BMD assessment in the setting of obesity
- Discuss the skeletal implications of weight loss

BMI and fracture risk

- Low BMI is associated with low BMD\(^1\)
- Low BMI increases fracture risk\(^2\)
- However, relationship is non-linear:
 - Obesity is less protective than low body weight is risky\(^3, 4\)

\(^1\)Felson 1993, \(^2\)Cummings 1995, \(^3\)De Laet 2005, \(^4\)Armstrong 2011

BMI and fracture risk

- The weak protective effect of higher BMI may even disappear in frank obesity
 - GLOW: Obese women fractured at same overall rates as normal weight women, and had more ankle and leg fractures\(^1\)
- WHO cohorts: After adjustment for their higher BMD, obese women fractured more\(^2\)

\(^1\)Compston 2011, \(^2\)Johansson 2011
An increasing burden of fractures are in the overweight and obese

Small decrease in fracture risk with high BMI

+ Majority of elderly are overweight or obese

= High proportion of fractures occur in those with BMI ≥25 kg/m²

Objectives

- Describe the epidemiology of obesity and fracture
- Identify mechanisms that may link adiposity to bone health and fracture risk
 - Regional deposition of fat tissue
- Recognize challenges in BMD assessment in the setting of obesity
- Discuss the skeletal implications of weight loss

Supporting a positive association between fat and bone

- Greater mechanical loading on skeleton
- Fat tissue provides padding with falls
- Increased aromatase activity → higher estradiol levels
- Leptin may act peripherally to stimulate bone formation

1Cornish 2002
Supporting a **negative** association between fat and bone

- Inflammatory cytokines impair bone formation
- Hyperglycemia and insulinopenia impair bone formation
- Leptin inhibits bone formation via sympathetic nervous system\(^1,2\)
- Fatty acids stimulate resorption
- Vitamin D deficiency common in obesity
- Hypogonadism common in obesity

\(^1\text{Ducy 2000, }^2\text{Takeda 2002}\)

Regional fat mass

- Body weight and total fat mass: imperfect measures of adiposity
- Visceral and subcutaneous adipose tissue (VAT and SAT), fat infiltration of muscle, bone marrow fat
- Central obesity, or VAT, linked to diabetes, cardiovascular disease\(^1,2\)

\(^1\text{Goodpaster 2003, }^2\text{Miyawaki 2004}\)

Regional fat mass and bone

- Studies using DXA-derived total fat mass: varying associations between fat and BMD
- Greater VAT is associated with lower BMD and impaired bone structure\(^1,2\)

\(^1\text{Russell 2010, }^2\text{Gilsanz 2009}\)

Fat infiltration of muscle

- Obesity is associated with fat accumulation in and around muscle
 - “Sarcopenic obesity”
- Greater fat infiltration of muscle is associated with increased fracture risk\(^1,2\)

\(^1\text{Lang 2010, }^2\text{Schafer 2010}\)

Vitamin D deficiency common in obesity

\(^1\text{Schafer 2010}\)
Bone marrow fat

- Bone and fat are intimately related within the marrow microenvironment
- Bone and fat cells share a common mesenchymal stem cell precursor

Bone marrow fat

- Greater bone marrow fat is associated with lower BMD and with compromised bone health
- Do bone marrow adipocytes induce low bone formation? Or just fill space?
- Does bone marrow fat provide information complementary to BMD?
- Does bone marrow fat predict fracture?

Objectives

- Describe the epidemiology of obesity and fracture
- Identify mechanisms that may link adiposity to bone health and fracture risk
 - Regional deposition of fat tissue
- Recognize challenges in BMD assessment in the setting of obesity
- Discuss the skeletal implications of weight loss

DXA in the setting of obesity

- Max weight of scanners: 275-350 lbs.
- DXA artifacts in obesity
 - Large amounts of soft tissue may ↑ or ↓ apparent spine BMD
 - Fat increases variability of measurements
 - Bone marrow fat may ↓ apparent BMD
- Potential bias in setting of weight loss

1Blake 2009, 2Totill 1997, 3Van Loan 1998
Options for BMD assessment

• Perform DXA (if weight allows) and interpret thoughtfully
• DXA of distal radius
• CT BMD (g/cm³) spine
• FRAX calculation without BMD

Osteoporosis treatment in obesity

• Bisphosphonates effective in obesity
 ▫ Women with BMI ≥25 kg/m² had greater fracture risk reduction w/ zoledronic acid¹
• Obese women may receive therapy for osteoporosis less often
 ▫ GLOW: 27% of obese women w/ incident fracture were treated, vs. 41% of overweight women and 57% of normal weight women²

¹Eastell 2009, ²Compston 2011

Case

65 y.o. woman presents for routine follow-up and healthcare maintenance
• PMH: Obesity, type 2 DM, HTN
• 5’ 5”, 240 lbs. (BMI 40 kg/m²)
• No family hx osteoporosis
• Hx ankle fracture 10 years ago

Refer for DXA for routine BMD screening?

Objectives

• Describe the epidemiology of obesity and fracture
• Identify mechanisms that may link adiposity to bone health and fracture risk
 ▫ Regional deposition of fat tissue
• Recognize challenges in BMD assessment in the setting of obesity
• Discuss the skeletal implications of weight loss
Weight loss, BMD, & fracture risk

- Weight loss (involuntary or voluntary) is associated with bone loss and increased fracture risk1
 - In older women, 2-fold higher risk of hip fracture compared to stable weight

1Ensrud 1997, 2003

Bone loss: Potential mechanisms

- Signals about decreased loading
- Nutritional factors
 - Lower vitamin D and calcium intake
 - Decreased calcium absorption1,2
- Changes in fat-secreted hormones
 - Decreased estradiol
 - Adipokines
- Loss of muscle mass

1Cifuentes 2004, 2Shapses 2013

Bariatric surgery and bone loss

- Roux-en-Y gastric bypass induces abnormalities in bone metabolism1-3
 - Increases in bone turnover
 - Decreases in BMD (up to ~10% at 1 year)

- Check and replete 25(OH)D pre-op
- Daily Ca + vitamin D supplement
- Check 25(OH)D, Ca, alb, phos, PTH, alk phos q 6 mo after malabsorptive surgery4
- DXA pre-op and annually?4

1Coates 2004, 2Fleischer 2008, 3Carrasco 2009, 4Heber (Endocrine Society) 2010

Maintaining adequate bone health during weight loss

- RCT of diet, exercise, diet+exercise, or control in 107 obese older adults1,2
 - Diet alone or diet+exercise → weight loss
 - Diet alone or diet+exercise → BMD loss
 - Diet+exercise: less BMD loss than diet alone
 - Diet alone → increase in CTX; diet+exercise → no increase

1Villareal 2011, 2Shah 2011
Maintaining adequate bone health during weight loss
- Addition of exercise to weight loss therapy
 - Attenuates weight loss-induced bone loss
 - Improves physical performance
- Attention to nutrition: Ca, vit D, protein
- Pharmacologic approaches (e.g., bisphosphonates) for high-risk patients?

Objectives
- Describe the epidemiology of obesity and fracture
- Identify mechanisms that may link adiposity to bone health and fracture risk
 - Regional deposition of fat tissue
- Recognize challenges in BMD assessment in the setting of obesity
- Discuss the skeletal implications of weight loss