Primary Liver Cancer

- 5th leading cause of cancer in the world
- Heterogeneous incidence
 - Low in America and Northern Europe
 - Intermediate in South Europe
 - High in Subsaharian Africa and Far East
- In the U.S. > 20,000 new cases in 2000
 - 75% increase since 1993
- Rising incidence of chronic hepatitis in U.S.
 - 1.2 million cases of hepatitis B
 - 3 million cases of hepatitis C
 - Predicted to equal levels in Japan within two decades

Hepatocellular Cancer in Cirrhotic Patients

Natural history of HCC (n=102)

- Median survival 17m
- # of deaths = 79 patients

References:
- NEJM 1999; 340:745
- PNAS 2002;99:15584-89
HCC Carcinogenic Sequence

- Dysplasia (size criteria)
- Dysplastic Nodule
- Regenerative Nodule
- Early HCC
- Solitary-encapsulated
- Multifocal/multinodular, Bilobar
- Diffusely Infiltrative/Invasive
- Neoplasia

3-50 months

Imaging of the Liver

OPTIONS
- Ultrasound
 - Contrast
- Computed Tomography
 - Multi Detector Technology
- Magnetic Resonance
 - Ultrafast Imaging
 - Diffusion Weighted
 - Eovist

GOALS
- Lesion characterization
- Lesion detection
- Staging for potential resection
- Assessment of therapeutic response

Hepatocellular Carcinoma

- Receives its blood supply from the hepatic artery and consists of abnormal hepatocytes arranged in a trabecular, sinusoidal pattern
- Expansive tumors: well differentiated and relatively slowly growing; usually well defined
- Invasive tumors: poorly differentiated with aggressive growth patterns; usually ill defined
- Invades vascular structures, more commonly the portal vein than the hepatic vein; arterioportal shunting is characteristic

HCC

Duplex Ultrasound

Left Hepatic Vein Tumor Involvement
Portal Vein Thrombosis

Computed Tomography

Advances
- Spiral
- Multidetector Spiral CT
- Major Advances
 - 3D Reformatting
 - CT Angiography

HCC Characteristics on CT
- Hyperdense enhancement during arterial phase
- Lesion become lower in density during later phase i.e. “Washout”

Hepatocellular Carcinoma

Multiphasic CT-Scan

- Example 1
- Example 2
MR Imaging

- Conventional Imaging
 - T1 (anatomy)
 - T2 (pathology)
 - Flow (MR angiography)

- Others
 - Fat (lesion characterization)
 - Metabolites (spectroscopy)
 - Tissue oxygen consumption (fMRI)
 - Diffusion & perfusion (ischemia, necrosis)
 - Temperature (monitoring therapy)

Management of HCC

- **Multidisciplinary:** Hepatologist, Oncologist, Diagnostic Radiologist, Interventional Radiologist and Surgeons

- **Supportive Care**

- **Palliative Therapies**
 - Transarterial embolization (TAE) or Chemoembolization (TACE)
 - Percutaneous Ablative Procedures
 - Hormonal treatments/Immunotherapy
 - Antiproliferative agents
 - Radiation Therapy: external and transarterial

- **Curative (Radical) Therapies**
 - Surgical resection (5-40%)
 - Liver Transplantation (CLT/LDLT)
 - Ablative procedures: Percutaneous ethanol injection (PEI) / Radiofrequency
Ablation Tools

- Chemical
 - ETOH
 - Acetic Acid
 - Chemotherapy
 - Experimental protocols
- Thermal
 - RF ablation
 - Cryoablation
 - Laser
 - Microwave

Percutaneous Ethanol Injection (PEI)

- Need to be able to locate the lesion
- Should be < 3cm

PEI 6 months later

Principles of Embolization Therapy

- Dual blood supply to liver facilitates preferential delivery of embolic/toxic agents to tumor “sparing” normal liver
- Access to hepatic artery allows for targeted regional therapy, minimal systemic effect
Patient Selection for TAE or TACE

- Unresectable disease
 - Multiple small tumors
 - Large >5 cm involving critical structures
- Liver only/dominant disease
- Adequate hepatic functional reserve
 Labs: T.bili< 2.0; Cr. < 1.5, Plts> 75
- Most are palliative procedures

Single Lesion Embolization

CT Scan

NON-CONTRAST EARLY ARTERIAL

Celiac -- Scout

Tumor

Left HA

Selective

Left HA

Post-embolization

Left HA
Multiple / Bilobar Disease

Embolization Procedures
--Complications--

- Occlusion of vessels to non-target organs
 - Cystic artery → chemical cholecystitis
 - Right gastric artery → gastric or duodenal ulceration
 - GDA → Acute pancreatitis
 - Biliary Necrosis (dilated intrahepatic ducts)
- Catheter related vascular injuries
 - Hemorrhage
 - Dissections
 - Aneurysms
 - Puncture site hematoma
- Liver Abscess
- Liver Decompensation
- Post-Embolization Syndrome

Patient Selection for Thermal Ablations

- Non-operative potential --quality of life issues.
- Unresectable
 - Anatomy – often not good for RFA either
 - Extending limits of resection
- Tumor Characteristics: Size and Distribution
 - Number < 3
 - Size < 3 cm, < 5 cm
- Assuming perfect accuracy should be as good as resection
Thermal Ablation – Guidance

- Ultrasound
- Computed Tomography
- Magnetic Resonance Imaging

RFA/Microwave – Techniques

- Percutaneous: CT scan/US
 - General anesthesia not always necessary
 - Less trauma/pain/recovery
 - Some tumors not anatomically feasible
 - No operative staging
- Laparoscopic/Thoracoscopic
 - Minimally invasive surgery
 - Better staging
 - Able to move organs from heat source
- Open
 - Optimal staging
 - Optimal probe placement
 - Able to combine with resection

CT – Guidance

Laparoscopic Technique

Umbilical Vein
RFA/Microwave – Local failure

- Increasing size
- Tumor vascularity
- Proximity to vascular structures
- Surgical versus percutaneous technique

Preoperative MRI
Post-RFA MRI

6 months 14 months

Curative Therapies

- Surgical Resection
- Liver Transplantation
- Ablative Therapies

Two Problems

- Chronic Liver Disease & HCC
- Underlying cirrhosis limits aggressive treatments.
- Surgery remains the only chance for long-term survival.
- Majority of patients are not suitable for operation.

Hepatic Resection in Cirrhotic Livers: The Early View

“...Partial hepatectomy for tumors occurring in cirrhotic livers should not be done unless it is necessary to control hemorrhage.”

- Liver Tumor Survey-- 1974
- Mortality rate was 58% in cirrhotic patients (n =26).

Foster JM, Berman MM., Solid Liver Tumor, 1977; p. 62-104
Preoperative Assessment of Liver Function

<table>
<thead>
<tr>
<th>Test</th>
<th>Author</th>
<th>Contraindication for Resection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child-Pugh</td>
<td>Franco</td>
<td>Score > 8</td>
</tr>
<tr>
<td>Serum alanine</td>
<td>Noun</td>
<td>ALT > twofold upper limit of norm</td>
</tr>
<tr>
<td>Indocyanine green</td>
<td>Lau</td>
<td>Retention rate at 15 minutes > 15 %</td>
</tr>
<tr>
<td></td>
<td>Makuuchi</td>
<td>Retention rate at 15 minutes > 10 %</td>
</tr>
<tr>
<td></td>
<td>Fan</td>
<td>Retention rate at 15 minutes > 14 %</td>
</tr>
<tr>
<td></td>
<td>Wu</td>
<td>Retention rate at 15 minutes > 10 %</td>
</tr>
<tr>
<td></td>
<td>Hasegawa</td>
<td>Retention rate at 15 minutes > 10 %</td>
</tr>
<tr>
<td></td>
<td>Hemming</td>
<td>Clearance < 5 mL/min/kg</td>
</tr>
<tr>
<td></td>
<td>Kanematsu</td>
<td>Retention rate at 15 minutes > 20 %</td>
</tr>
<tr>
<td>Urea nitrogen synthesis</td>
<td>Paquet</td>
<td>< 6 g/day</td>
</tr>
<tr>
<td>Portal Vein Pressure</td>
<td>Brux</td>
<td>HVPG > 10 mm Hg</td>
</tr>
<tr>
<td>Lidocaine (MEGX) test</td>
<td>Ercolani</td>
<td>MEGX < 25 ng/ml*</td>
</tr>
<tr>
<td></td>
<td>Grazi</td>
<td>MEGX < 25 ng/ml*</td>
</tr>
</tbody>
</table>

*alone not considered an absolute contraindication to resection

Preoperative Interventions

- Prevention of Variceal Bleeding
 - Sclerotherapy
 - Transjugular intrahepatic portosystemic shunt (TIPS)

- Arterial Embolization
 - Diagnostic Angiogram
 - Reduces tumor bulk

- Sequential Arterial and Portal Embolization (*double vascular embolization*).

Right Hepatic Artery Embolization

Sequential Arterial and Portal Embolization

3 Weeks After Right Hepatic Arterial Embolization
Right Portal Vein Embolization
Sequential Arterial and Portal Embolization

Occluded PV

Occluded PV

Repeat Right & Left Hepatic Arterial Embolization

Recanalized Branch from Replaced RHA
Left HA Branches

CT Scan
6 weeks after PVE, 9 & 3 weeks after TACE
General Operative Considerations

- **Specific technical difficulties in the Cirrhotic:**
 - Parenchyma is hard.
 - Anatomic landmarks are distorted.
 - Tissue friability.
 - Tumors may be difficult to recognized from the surrounding cirrhotic liver.

Yoshida Y, Ann of Surg 1989;209 (3):297-301

- **Complete Staging:** Bone scan, CT-chest
- **Preserved Liver Function**
 - Childs A-- ONLY
- **Cardiopulmonary assessment** (> 65 yrs).
- **Open Resections are now rare:** Majority are done Laparoscopically, or Not at all.
- **When done open, we prefer a Makuuchi incision**
 - Full abdominal exploration.
 - Intraoperative ultrasound.

Non-Anatomic Resections

Operation

Operative Management of Large HCC
--Anterior Approach--

Large HCC –Anterior Approach
Extended Resections

• Most patients are treated by multiple complementary ablative approaches
• The order depends on the pattern of disease
• Options include
 – Resection, RFA/microwave, TACE, and/or PEI
 – RFA/microwave then TACE
 – PEI then, TACE
Presentation CT Scan

Hepatic Arterial Embolization

Tumor Invading R Kidney

Venous Shunt

Right (posterior) HA

Venous Shunt

Right Renal Artery Embolization

Post Embolization Right posterior HA & Superior Pole Renal Artery
Repeat RHA (entire) Embolization

CT Scan Following TAE x 5
- Residual Tumor

CT Scan Following TAE x 6
- Enhancing tumor

Percutaneous Ultrasound Guided RFA of Residual Liver Tumor

Kidney
HCC

Pre RFA Post RFA

Multiple Modality Approach

AFP levels

RFA

TAE

Post Laparoscopic Resection and RFA
Summary

- Therapy of liver tumors in patients with cirrhosis remains challenging.
- However, hepatic resection for HCC can be performed safely, provided a limited resection is anticipated.
- Resection should be considered the standard therapy for HCC.
- Inoperable patients can benefit from liver directed transarterial ablative therapies to halt tumor progression and to extend survival.

Contact Information:
Carlos U. Corvera M.D.
Associate Professor
Department of Surgery
Gastrointestinal Surgical Oncology
Chief, Liver, Biliary and Pancreatic Surgery
University of California, San Francisco School of Medicine
Helen Diller Family Comprehensive Cancer Center
Email: carlos.corvera@ucsfmedctr.org
Phone: Mobile # (415) 317-4602
Direct Line: (415) 502-1690
Clinic Line (referrals) Fax: (415) 353-9931
Tel: (415) 353-9888
Academic Practice: Address: Room U-370
521 Parnassus Avenue
San Francisco, CA. 94143
Assistant (Marjorie Galicha)
email: Marjorie.Galicha@ucsfmedctr.org
tel: (415) 415-476-0762