Upstream Therapy for Atrial Fibrillation

Jeffrey Olgin, MD
Chief, Division of Cardiology
Co-Director, Heart and Vascular Center
University of California San Francisco

CA Heart Rhythm Symposium
September 2012

Syllabus

• What does upstream mean?
• Evidence for role of fibrosis in AF
• Biology of fibrosis
• EP Effects of fibrosis
• Mechanism of fibrosis in AF
• Atrial selectivity of fibrosis
• Potential therapies

Disclosure

Grant
Zoll

Grant/Honorarium
Gilead

Common AF: An Acquired Disease

Genetic Influences
Environmental Influences
Aging
Other Diseases (HTN, CHF, OSA, obesity)

REMODELING

Electrical
Structural
Neuro-humoral

Trigger
Substrate

ATRIAL FIBRILLATION
AF: Current Treatment

Genetic Influences --> Environmental Influences --> Aging

Other Diseases (HTN, CHF, OSA, obesity) --> REMODELING

Electrical --> Structural --> Neuro-humoral

Ablation --> Trigger --> Substrate

AA Drugs

Atrial Fibrillation

What is Does Upstream Mean?

Genetic Influences --> Environmental Influences --> Aging

Other Diseases (HTN, CHF, OSA, obesity) --> UPSTREAM

Electrical --> Structural --> Neuro-humoral

Aging

Atrial Fibrillation

ACEI/ARB/ALDIO Use to Prevent AF

Khatib, et al. *Int J Cardiol* 2012

ACEI/ARB Use to Prevent AF

Khatib, et al. *Int J Cardiol* 2012
Statin Use to Prevent AF

Fish Oil: Afib Recurrence after CV

Kowey, et al. JAMA 2010
Kumar, et al. Heart Rhythm 2012

Up a Creek Without a Paddle: Anti-arrhythmic Drugs

Exploiting Gaps in the Market

Kumar, et al. Heart Rhythm 2012
Fibrosis as Final Common Pathway

- Senescence
- Mitral valve disease
- HTN
- Heart Failure
- Lone AF

Atrial Fibrillation and Fibrosis

- Sirius Red Collagen IH

Atrial Fibrillation and Fibrosis: LA

Collagen Content (collagen/GAPDH)

<table>
<thead>
<tr>
<th></th>
<th>Lone AF SR</th>
<th>Lone AF Parox</th>
<th>Lone AF Chronic AF</th>
<th>MVD SR</th>
<th>MVD Parox</th>
<th>MVD Chronic AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen</td>
<td>0.0 ± 0.1</td>
</tr>
</tbody>
</table>

Fibrosis in LA: Lone AF

Heart Failure Induced Atrial Remodeling

Li, et al. Circulation 1999

TGF-β1 Transgenic Mouse

AF Inducibility

TGFβ1 Mice: Cellular Electrophysiology

Cardiac Cell Subpopulations

- **Myocyte**
 - Lymphocyte
 - Endothelial Cell
 - Fibroblast

Fibroblast Transformation

- Fibroblast exist as small, round cells that have low level of collagen production
- When stimulated they begin to express large quantities of actin and become factories for collagen and cytokines
 - Stimulated by stretch, cytokines, injury, stress

Cardiac Fibroblasts

- Make up about 50-60% of cell types in the heart
 - Higher in the atria
- Responsible for maintaining the extracellular matrix in the heart
 - Collagen turnover—about 5% per day
 - Integrates contractile force across cardiomyocytes
 - ECM conserves 3-dimensional cyto-architecture for efficient conduction and contraction
- Can transform to collagen & cytokine producing “factories” called myofibroblasts
- Can actively and passively exert electrical effects

Active and Passive Effects of MFb

PROPAGATION
- Secrete Collagen—insulator
- Larger size and coupling
 - Couple to CMYocyte via Connexin
 - Passive conductor across MFb
 - Electrotonic interaction with CMYocyte

IMPULSE GENERATION
- Collagen improves source—sink for automaticity (like sinus node)
- MFb ion channel expression and coupling to CMYocyte
 - Spontaneous depolarization and automaticity

What does fibrosis do?
- Slows conduction (regional)
- Fibrillatory conduction/wavebreak
- Substrate for rotors
- Facilitates automaticity

Isotropic Conduction

Non-Uniform Anisotropy
Conduction Heterogeneity

Normal AF Substrate

Verhuele, et al *AJP* 2004

Effects of MFb

Propagation Automaticity

Rohr, *Heart Rhythm* 2009

Mechanism of Atrial Fibrosis

- What is the mechanism of atrial fibrosis?
- Does preventing fibrosis prevent atrial fibrillation?

adapted from Burstein & Nattel, *JACC* 2008
Canine Heart Failure: TGFβ

Atrial TGFβ1 Expression

Human Atria: TGFβ1 Levels

Human atria: TGFβ1 levels were measured in human atria. The graph shows the relative protein levels of TGFβ1 in different groups.

AF C C AF C AF C AF C C C C C

Relative Protein Level

Effect of Pirfenidone

Conduction AF Vulnerability

Why is the atria uniquely susceptible to fibrosis?

Effect of Pirf on AF Substrate

TGFβ1 Mice: Selective Atrial Fibrosis

Recovery from Heart Failure
Differential Fibrosis: Canine HF

TGFβ1 Tx Mice: Differential Gene Expression

Log2 (Tx/A vs WtA)

Significant difference TxA vs WtA

Significant difference TxV vs WtV

Log2 (TxA/WtA)

Atria (Wt)

Atria (Tx)

Ventricle (Wt)

Ventricle (Tx)

MEEBO Array

TGFβ Signaling

[Modified from Derynk]

Atrial Specific

[Modified from Derynk]
Rescue of TGFβ Overexpression

- Is this relevant to human atrial fibrillation?

TGFβ1 Content: Human Hearts

Chamber Differences in Fb

- Failing or Non-Failing Human Hearts
- Fb Culture
- TGFβ
- Cell isolation
- qRT-PCR
- IHC
- Collagen
- LV
- Atria
- Morphology
Isolated Human Fibroblasts: Response to TGFβ1

Collagen I mRNA

Non-Failing Hearts

Failing Hearts

Conclusion

- Atrial fibrosis is an important substrate for AF
- TGFβ1 plays a central role in animal models and human AF
- The atria are uniquely susceptible to TGFβ-induced AF, especially in failing hearts
- Targeting fibrosis may be important target for prevention and treatment of AF—a new anti-arrhythmic approach

Swimming Upstream
Thank You

Olgin Lab
Emily Wilson
Dolkun Rehemedula
Chunhua Ding
Tom Everett
Hoa Zhang
Roger Chang
George Holley
Greg Marcus

UCSF Microarray Core
David Erle
Andrea Barczak
Yuanyuan Xiao
Anges Paquet

UCSF Living Heart Team
Roger Chang
Croft Thomas
Jacob Vogan

CTDN

Effect of Increasing Fibrosis
Simulated Tissue Propagation

Jacquemel & Henriquez Heart Rhythm 2009

Rotor Driving AF
ACE Inhibition in AF: CHF

Li, et al. *Circulation* 2001

Isolated Human Fibroblasts: Response to TGFβ1

LOX mRNA

<table>
<thead>
<tr>
<th>Non-Failing Hearts</th>
<th>Failing Hearts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fb</td>
<td>ctrl</td>
</tr>
<tr>
<td>Ventricle Fb</td>
<td>ctrl</td>
</tr>
</tbody>
</table>

Fold Change

| ctrl | tgfβ1 |
| ctrl | tgfβ1 |

Human Atria: Activated TGFβ1

PAI1-Luc Activity in MLEC Assay

Up-a-creek

Even with a paddle, being up shit creek is kind of a drag.
ACEI for AF Prevention: Meta Analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>RR (95% CI random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ACEI inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re🌟</td>
<td>2/7</td>
<td>7/11</td>
<td></td>
</tr>
<tr>
<td>SOLVD</td>
<td>101/196</td>
<td>49/105</td>
<td></td>
</tr>
<tr>
<td>TRACE</td>
<td>22/700</td>
<td>42/767</td>
<td></td>
</tr>
<tr>
<td>Lis off</td>
<td>15/00</td>
<td>32/75</td>
<td></td>
</tr>
<tr>
<td>CAPRA</td>
<td>117/1492</td>
<td>135/1463</td>
<td></td>
</tr>
<tr>
<td>STOP-H2</td>
<td>200/2056</td>
<td>977/4409</td>
<td></td>
</tr>
<tr>
<td>GISSI</td>
<td>695/886</td>
<td>721/846</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1034/12415</td>
<td>1338/15009</td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity chi-square = 22.26 df = 6 P = 0.00001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect z = -2.53 P = 0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. ARB			
Medtrix	9/79	29/75	
CHARM	170/2780	105/1490	
LIFE	179/4117	250/1387	
Subtotal (95% CI)	402/474	663/411	
Test for heterogeneity chi-square = 5.26 df = 3 P = 0.15			
Test for overall effect z = -4.12 P = 0.00004			

Total (95% CI) | 1517/27909 | 2002/29020 | |
| Test for heterogeneity chi-square = 45.30 df = 10 P < 0.00001 | | | |
| Test for overall effect z = -3.74 P = 0.00002 | | | |

TGFβ Tx Mice: TGFβ Signaling

- TGFβRI
- TGFβRII
- Smad-2/3
- pSmad-2
- β-actin

TGFβ Tx Mice: Effect of TGFR Kinase Inhibition

- IL-6
- ET-1
- PAI-1

AP-1 Regulated Genes

- CRP
- RANTES
- ICAM-1
TGFβ Tx Mice:
Effect of TGFR Kinase Inhibition

- Collagen mRNA levels (% WtA)
- WtA, TxA, TxA+Ki26894, WtV, TxV, TxV+Ki26894

Sinus Node: Trichrome Stain

- Fibrosis required to
 - Minimize electrotonic interaction for impulse generation
 - Overcome source-sink mismatches to allow SN to drive atria

Sanchez-Quintana, et al. Heart 2004

Ovine HTN Model
Atrial Fibrosis

- Genetic Influences
- Environmental Influences
- Aging
- Other Diseases (HTN, CHF, OSA, obesity)

- Atrial Collagen Content
- AF Inducibility

- Kistler et al. Eur Heart J. 2006
Effect of TGFβ1 on Fibroblasts

TGFβ1 ➔ Collagen
Fibroblasts ➔ Myofibroblasts

Effect of TGFβ1 on Fibroblasts

Pirfenidone
TGFβ1 ➔ Collagen
Fibroblasts ➔ Myofibroblasts

Effects of TGFβ1
- Major activator of fibroblasts to produce collagen
- Organ and vascular development
- Bone turnover
- Wound healing
- Cancer?

Cardiac Effects of TGFβ1
- Hypertrophy
- Fibrosis
- Apoptosis
Varied TGFβ1 Effects

- Different receptor subtype combinations
- Extracellular modifiers of TGFβ activity and receptor binding
- “Co-factors”
- Different intracellular signaling
- Coordination with other cytokines and transcription factors

![TGFβ1 Activation Diagram](image)

TGFβ1 Activation

Latency Associated Peptide → TGF-β

- Small Latent Complex
- LAP-dimer
- TGF dimer
- Large Latent Complex
- Extracellular Matrix
- LTBP-1

![Activation Isochronal Maps](image)

Activation Isochronal Maps

- LA
- LV
- Wt
- Tx
- Effective Refractory Period
- AF Inducibility (%)

Statistical Graphs

- Graph A
 - AF Inducibility (%)
 - P < 0.001
- Graph B
 - Effective Refractory Period
- Graph C
 - Representative Optically-Derived Action Potentials
- Graph D
 - Activation Isochronal Maps
 - Activation
 - MMP Integron αβ
 - LTBP-1
Tx Mice: cys33ser TGFβ1

- Latency Associated Peptide
- TGF-β
- LAP-dimer
- LTBP-1
- Extracellular Matrix
- Constitutively Active TGFβ1

CHF and Atrial Fibrosis

- Conduction Velocity (m/s)
- HF Contr
- Non-uniform Anisotropy