ECG Screening and Risk Stratification in Competitive Athletes

Byron K. Lee MD
Associate Professor
Director of EP Laboratory
leeb@medicine.ucsf.edu
Division of Cardiology
Cardiac Electrophysiology

CA Heart Rhythm Symposium
September 7-8, 2012

If Hippocrates Saw Pheidippides

Pheidippides’ ECG?
Magnitude of SCD in the US

- **Stroke**: 167,366
- **Lung Cancer**: 157,400
- **Breast Cancer**: 40,600
- **AIDS**: 42,155

SCD claims more lives each year than these other diseases combined.

450,000

SCD is #1 Killer in the U.S.

Causes of SCD (Age>35)

- **Uncommon causes**
 - Arrhythmias
 - Cardiomyopathy

- **Risk factors for common atrial fibrillation**
 - Older age
 - Hypertension
 - Diabetes

SCD due to CAD: Darryl Kile

Huikuri et al. NEJM 2001 (adapted from Myerburg)
Causes of SCD (age<35)
• #1: Hypertrophic CM
 - 1 in 500
 - Scarred and disordered myocardium
 - Confirmed HCM in 26.4% of SCDs
 - Probable HCM in 7.5% additional cases of SCD
 - Diagnosis
 - PE
 - ECG
 - Echo

ECG in Hypertrophic CM

Causes of SCD (age<35)
• #2: Commotio Cordis
 - Blunt blow to the chest 15-30ms before T-wave peak (vulnerable phase of repolarization)
 - Mean age 13 years old
 - Compliant chest wall
 - 19.9% of SCDs
 - Structural normal heart
 - Normal ECG
Causes of SCD (age<35)

• #3: Congenital Coronary Artery Anomalies
 – Artery arises from wrong aortic sinus
 – Classic presentation: CP or syncope with exercise
 – 13.7% of SCDs
 – Diagnosis:
 ◦ Stress test
 ◦ Echo
 ◦ MRI
 ◦ CT
 ◦ Cath
 – Normal ECG
Athlete’s Heart

- **Triggers**
 - Endurance sports (rowing, cross country skiing, swimming)
 - Isometric sports (weightlifting, wrestling)

- **Cardiac changes**
 - Heart size and chamber enlargement
 - Increased LV wall thickness
 - Increased LA
 - Preservation of systolic and diastolic function

- Associated with abnormal ECG patterns
- Considered a benign adaptation to training

17 year old Swimmer

- Referred for Abnormal ECG
- Sees you for evaluation
 - No syncope
 - No symptoms of cardiac disease
 - No FH of SCD
 - Appears to be extremely physically fit
 - Rest of exam benign except for a soft systolic murmur
17 year old Swimmer

- **Echo**
 - Significant concentric LVH with maximal wall thickness of 14 mm (normal <12 mm)
 - Normal LV cavity of 48 mm
 - Normal systolic and diastolic function
 - Normal valves
- **MRI** normal except for wall thickening
- **ETT** normal
- **24 hour holter normal**
- **Now what?**

After 8 week of Deconditioning

LVH regressed from 14 mm to 11 mm

Detraining in 40 Elite Athletes

Automatic External Defibrillator (AED)

ICD Size

ICDs and Exercise

Physician recommendations regarding avoidance of activities

- All more vigorous than golf or bowling
- All vigorous sports
- Contact sports
- Competitive sports
- Sports with risk injury
- No restrictions

Percent of respondents

0 10 20 30 40 50 60 70 80 90 100

Lempert et al. JCE 2006

Pre-participation Screening in Italy

Corrado et al. JAMA 2006
AHA Recommendation

The American Heart Association (AHA) recommends for the prevention and detection of cardiovascular disease in young athletes.

- If age >35, add ETT if RF for CAD
- If age >65, add ETT

Conclusions
A large population-based screening initiative for athletes that translates a 12-lead ECG, such as that already proposed by the ESC and IOC, is probably impractical and would require considerable resources that do not currently exist, as well as substantial long-term federal government investments.

AHA Cost Analysis for U.S.

- 10M middle school and high school athletes
- Initial Screen
 - $25 for H&P
 - $50 for ECG
- Follow-up Screen
 - $100 for H&P
 - $400 for Echo
- Administrative Cost: 500M
- Total Cost: $2B
- $330,000 for every relevant disease diagnosed
Other Cost Effectiveness Analysis

Cost effectiveness of pre-participation screening for prevention of sudden cardiac death in young athletes

Matthys T. Willems, MD, PhD,1,2 Paul A. Helderman, MD, MS1,3,4,5 Victor F. Froelicher, MD,4,6,7 Mark A. Hlatky, MD,1,3,7 and Evan A. Ashley, MRCP, DPhil,1,2
Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305

Annals of Internal Medicine 2010

Cost and yield of adding electrocardiography to history and physical in screening Division I intercollegiate athletes: A 5-year experience

Robert Hubelota, MD,1,7,2 Jason Mende, MD,1,7 John Dott, MD,1,7 Max Less, MD,1,7 Christopher M. Kramer, MD,1,7,2 Paul Maneyp, MD,1,7 Robert Battel, MD,1,7 Ethan Saliba, PhD,1,7,2 Benjamin Rose,1,7 Guanmin Poon, MD,1,7,2 John MacKnight, MD,1,7,2,7,2,7
From the Department of Internal Medicine, Division of Cardiology, University of Virginia, Charlottesville, Virginia

HRS 2011

AHA Recommendation

If age >35, add ETT if RF for CAD
If age >65, add ETT

Maron et al. Circulation 2007

Conclusions

A large population-proportionate screening initiative for US athletes that mirrors a 13-nodal 12-lead ECG, such as that proposed by the AHA and ACC, is probably impractical and would require considerable resources that do not currently exist, as well as substantial long-term federal government subsidies. Although such a complex initiative would have benefits in terms of detecting larger numbers of athletes with important heart diseases, it is unlikely that the current formulation of such a national program could serve because of the numerous (unaddressed) barriers. Paradoxically, such screening could also be potentially harmful to many athletes by virtue of false-positive test results that could lead to unnecessary further evaluations and testing, anxiety, and possibly to myocardial infarctions. Although the 12-lead ECG remains the gold standard, it is not currently feasible to implement such a screening program into the US medical system and environment. On the other hand, the recent move of some experts to consider the use of 12-lead ECG as part of a comprehensive testing plan, formalized relatively on a case-by-case basis, is local communication if it is designed and properly implemented.
Pre-participation Screening at UCSF

- 80 total volunteers
 - Half were RNs and MDs
- 40 volunteers for cardiac screening
 - 7 ECG machines
 - 10 ECGs per hour per machine
 - 2 Echo machines
 - 1.5 Echo’s per hour per machine

ECG Screening at UCSF

- By the Numbers
 - 2009: 155 athletes
 - 2010: 349 athletes
 - 2011: 327 athletes
 - 2012: 540 athletes
- 1371 total screened
- 1216 unique athletes
- 52 (4.28%) with abnormal ECG leading to Echo
- 8 (0.7%) not approved for sports and need further work-up by their own MDs
Findings

- 8 non-approved athletes
 - 2 WPW
 - 2 Long QT
 - 1 RVE with ASD
 - 1 LVH with syncope
 - 1 Bicuspid AV and PFO
 - 1 Orthopedic injury

Conclusions

- Most SCDs occur in otherwise healthy individuals
- Main cause of SCD
 - Over 35: CAD
 - Under 35: HCM, Commmotio Cordis, Coronary Anomalies
- ICDs can be life-saving but will limit physical activity
- Young athletes screening:
 - H&P
 - ECG?
- Master athletes (age >35) screening:
 - H&P
 - ETT (if RFs for CAD or age>65)
- Community based programs can find new disease and save lives

Resuscitation Success vs. Time*

- Chance of success reduced 7 - 10% each minute
