Mapping of Ventricular Tachycardia
Coronary Artery Disease:
Does Entrainment Have a Role in the Era of Substrate Modification?

John M. Miller, MD
Professor of Medicine
Indiana University School of Medicine
Krannert Institute of Cardiology
Director, Clinical Cardiac Electrophysiology

~ Disclosures ~
Medtronic, Inc. (Research & training support; Consultant; Lecturer)
Boston Scientific Corp. (Research & training support; Lecturer)
St. Jude Medical (Research & training support; Lecturer)
Biosense-Webster, Inc.; Biotronik, Inc. (Trainin support; Lecturer)
Stereotaxis, Inc.; Topera Medical (Advisor Board)

What Are We Talking About?

Typical patient with scar-related VT
• Substantial scar burden
• Decreased ventricular systolic function
• Comorbidities (PVD, COPD, etc.)
• ICD present
• Many have had prior cardiac surgery (CABG, valve)
• Already taking amiodarone in varying dose

What’s “Classical/Entrainment Mapping”?

Classical mapping = activation mapping
• Acquiring timing of local electrograms looking for “earliest” activation (macroreentry: mid-diastolic)
• May be used with or without mapping system
• Endpoint is termination of VT and non-inducibility

Entrainment mapping -
• Assessing presence of concealed fusion during and PPI or PPI-TCL after pacing at candidate sites
• Sites with (PPI – TCL) < 30 ms are likely in circuit
• Generally requires mapping system
• Endpoint is termination of VT and non-inducibility

What Are We Talking About?

Ideal procedure for ablation in scar-related VT
• Readily performed in most patients
 ▪ Few procedural constraints
 – Can apply in wide range of patients – heart failure
 ▪ Equipment/skills universally available
 – No special electrodes/systems/analytical skills
 ▪ Achievable endpoints
 – Measurable outcomes
• Good outcomes
 ▪ Safety
 – Acute survival, freedom from complications
 ▪ Efficacy
 – Freedom from recurrent VT episodes off antiarrhythmic drugs
 – Survival
Entrainment Criteria

Entrainment essentials:
• Start with stable tachycardia
• Overdrive pace till all relevant electrograms are accelerated to paced cycle length
• After cessation of pacing, same tachycardia resumes
• Fusion is present during pacing

Determining presence of fusion:
• Know what pure pacing looks like (dissimilar from both tachycardia and pacing during tachycardia)
 ▪ Have an example of pure pacing (during sinus rhythm)
 ▪ Know what pure pacing *should* look like
• Show graded change in activation at different paced rates (“progressive fusion”)
• Observe stimulus artifact after onset of accelerated complex

Classical/Entrainment Mapping

Advantages –
• Familiarity
• Assurance we are in the right spot (not bystander)
• Proof of concept – RF terminates VT

Disadvantages –
• Irregular tachycardias - bad news, good news
• No inducible stable tachycardia
• Difficult interpretation of post-pacing electrograms
• Cycle length-dependent conduction slowing
• Rarely, best ablation site is systolic (within QRS)
• Multiple tachycardias - spontaneous/induced change

Spontaneous Onset at Suspicious Site

3:11 PM

Entrainment at Site

3:12 PM
Ablation at Site

3:20 PM

Substrate Mapping

- Acquire voltage/location data to determine location of:
 - Barriers to/boundaries for conduction (valve annuli, scar)
 - Channels of conduction between barriers
 - Late potentials
 - Sites with pacemaps similar to known VT morphologies

- Advantages:
 - Treats current VTs, may preclude future arrhythmias
 - Don’t have to have inducible/mappable tachycardia
 - Don’t have to know how to do the other stuff

- Disadvantages:
 - Takes time and dense mapping
 - Lots of ablation; possible volume overload/collateral damage
 - Accuracy (false positive “scar”)

Substrate-Based Ablation

Several techniques have been applied –
- Encircle scar region
- Radial lines through border zone
- Transect conduction channels
- Render sites of pacemapping non-capturable
- Effect block across ablation line (mitral isthmus)
- Elimination of late potentials
- Scar homogenization

Apical Scar Delineated
Connecting Barriers to Transect Circuit(s)

Lesion Set Based on Scar

Radial Array

Late Potential Elimination
Voltage Mapping

Elimination of Late Potentials with Ablation

Pre-Ablation

Post-Ablation

Late Potential Distribution

Voltage Mapping: Specificity

Baseline Voltage Map

Edited Voltage Map
Endpoints of Ablation

What is the best endpoint of ablation?

- Inducibility-based
 - Non-inducibility of clinical VT
 - Non-inducibility of mappable VT
 - What is “mappable” vs not varies widely among centers
 - Non-inducibility of all VTs
 - Hard to achieve in amiodarized patients
- Substrate-based
 - Elimination of late potentials
 - Rendering areas non-capturable
 - Completion of lesion set
 - Demonstration of block on a line (e.g., mitral isthmus)
 - Homogenization of scar (“seeing red”)

Mapping Techniques Compared

<table>
<thead>
<tr>
<th>Requires sustained tachycardia</th>
<th>Requires CL stability</th>
<th>Requires mapping system (computer)</th>
<th>Usable in sinus rhythm</th>
<th>Sensitive</th>
<th>Specific</th>
<th>Ability to preempt future arrhythmias</th>
<th>Extent of ablation</th>
<th>Potential for CHF (fluid; collateral damage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+++</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

What Are We Talking About?

Ideal procedure for ablation in scar-related VT

- Readily performed in most patients
 - Few procedural constraints
 - Can apply in wide range of patients – CHF
 - Equipment/skills universally available
 - No special electrodes/systems/analytical skills
 - Achievable endpoints
 - Measurable outcomes
- Good outcomes
 - Safety
 - Acute survival, freedom from complications
 - Efficacy
 - Freedom from recurrent VT episodes off drugs
 - Survival

Entrainment vs Substrate Mapping

Summary –

- Activation and entrainment mapping are powerful tools in treatment of scar-related VTs
 - Proof of being at the correct ablation site
 - Reasonable endpoints and outcomes
 - While these are potent tools, they have wrinkles
 - Irregular VT; changing VTs; no inducible VT/unstable VT
- Substrate mapping is also an excellent tool
 - Can be used in all patients
 - Reasonable endpoints and outcomes
 - Not a perfect tool
 - Relatively low sensitivity and specificity
 - Substantial time used, volume administered
Approach to Scar-Based VT

<table>
<thead>
<tr>
<th>VT Present Baseline</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroanatomic Map</td>
<td>Yes</td>
</tr>
<tr>
<td>(chamber dimensions; voltage/scar determination)</td>
<td>Yes</td>
</tr>
<tr>
<td>Attempt Entrainment</td>
<td>No</td>
</tr>
<tr>
<td>(determine mechanism [ablation target characteristics]; locate ablation target sites)</td>
<td>No</td>
</tr>
<tr>
<td>Ablate</td>
<td>No</td>
</tr>
<tr>
<td>(interrupt channels, connect barriers)</td>
<td>No</td>
</tr>
<tr>
<td>Declare Victory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inducible VT</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroanatomic Map</td>
<td>Yes</td>
</tr>
<tr>
<td>(chamber dimensions; voltage/scar determination)</td>
<td>Yes</td>
</tr>
<tr>
<td>Attempt Entrainment</td>
<td>Yes</td>
</tr>
<tr>
<td>(determine mechanism [ablation target characteristics]; locate ablation target sites)</td>
<td>Yes</td>
</tr>
<tr>
<td>Ablate</td>
<td>Yes</td>
</tr>
<tr>
<td>(interrupt channels, connect barriers)</td>
<td>Yes</td>
</tr>
<tr>
<td>Declare Victory</td>
<td></td>
</tr>
</tbody>
</table>

Entrainment vs Substrate Mapping

Conclusions –

- Activation/entrainment *and* substrate mapping are both very valuable tools for treatment of scar-related ventricular tachycardias
 - There will be cases in which one or the other is not practical or proves unreliable
 - It is important for the practicing electrophysiologist to be facile with both techniques
- These should be regarded as complimentary, rather than “this or that” tools