Acute Respiratory Failure
Carolyn S. Calfee, MD MAS
UCSF Critical Care Medicine and Trauma CME
May 30, 2014

Disclosures

- Research funding: NIH, UCSF CTSI, Glaxo Smith Kline
- Medical advisory boards: Cerus

Acute Lung Injury/ARDS
New Definition for ARDS: The Berlin Definition

- ARDS is defined by consensus criteria
- Last updated in 1994 by the American-European Consensus Conference
- While AECC definition has served well, group of investigators met in 2011 to reconsider the definition
- Goal of clarifying some aspects of AECC criteria

ARDS Definition Task Force, JAMA 2012
Berlin Definition vs. AECC Definition

- Preserves the central features of prior definition:
 - PaO2/FiO2 ratio < 300
 - Bilateral radiographic opacities not primarily due to heart failure
- Elimination of term “acute lung injury”
 - Mild ARDS: PaO2/FiO2 ratio 201-300
 - Moderate ARDS: PaO2/FiO2 ratio 101-200
 - Severe ARDS: PaO2/FiO2 ratio ≤ 100
- Patients with ARDS must be on positive pressure ventilation with PEEP ≥ 5 cm H2O
- CPAP allowed for mild ARDS only

ARDS Definition Task Force, JAMA 2012

Berlin Definition: Clarifications from AECC Definition

- Acute onset = within one week of known insult
- Recommends assessment of cardiac function (e.g., echocardiogram) if no known ARDS risk factor
- Clarifies that ARDS may co-exist with volume overload
- Several additional features were considered for inclusion but ultimately discarded, as they did not add predictive value:
 - Radiographic severity, respiratory compliance, high PEEP, and high minute ventilation

ARDS Definition Task Force, JAMA 2012

Berlin Definition: Summary

- Essential elements of definition unchanged
- Elimination of term “ALI”
- Increased recognition of co-occurrence of ARDS and volume overload
- Requirement for PEEP is most significant change
 - May limit applicability to early ARDS in non-ventilated patients and to resource-limited settings

ARDS Definition Task Force, JAMA 2012
Overview

- New definition of ARDS: The Berlin Definition
- Neuromuscular blockers
- Deserving: PROSEVA trial
- Cisatracurium
- Weaning
- Timing neuromyopathy in ARDS
- Future therapies:
 - SVTAI: Nanowires
 - Mesodermal stem cells

Cisatracurium for Early Severe ARDS

- N=340
- P:F ratio < 150 on PEEP ≥ 5
- Within 48 h of presentation
- Cisatracurium for 48 h
 - Bolus followed by infusion of 37.5 mg/hr
 - HR for death 0.68 (0.48-0.98, p=0.04)
 - After adjustment for baseline imbalances

Neuromuscular Blockers: Key Points

- Mechanism of benefit unclear
- Decrease in VILI
- Survival curves separate late
- No increase in neuromyopathy observed
- Trial may be too small to detect this
- Benefits may be unique to cisatracurium
- Reinforces clinical practice of many senior intensivists
 - Consider when dyssynchrony is an issue
 - Repeat trial needed before extending to all severe ARDS
Overview

- New definition of ARDS: The Berlin Definition
- Neuromuscular blockers
- Proning: PROSEVA trial
- Gas exchange
- Weaning
- Lung re-education in ARDS
- Future therapies:
 - Extracorporeal membranes
 - Mesenchymal stem cells

Gattinoni et al. NEJM 2001

Mancebo J, et al. AJRCCM 2006
Meta-analysis of Prone Positioning Suggests Benefit in Severe ARDS

INCLUSION CRITERIA:
- Age ≥ 18 years
- Intubated for ARDS < 36 hours
- ARDS according to AECC criteria for minimum 12-24 hours
- AND severity criteria at that time
 - PaO2/FIO2 < 150 with FIO2 ≥ 0.6 + PEEP ≥ 5 cm H2O + VT 6 ml/kg IBW

EXCLUSION CRITERIA:
- Pregnancy
- Facial trauma
- Unstable spines or long bone fractures
- Patient already on iNO or ECMO
- MAP < 65 (vasopressor resistant)
- Vast majority of pts were on vasopressors

PROSEVA: Inclusion and Exclusion Criteria

Proning Protocol: Important Details

- Randomized 474 patients
- DOSE OF PRONING:
 - Time from randomization to first PP = 55 ± 55 minutes
 - PP daily duration = 17±3 hours
 - All patients ventilated with lung protective ventilation
- Criteria for cessation of daily proning:
 - FIO2 ≥ 150
 - PEEP ≤ 10
 - FID2 ≤ 0.60
 - All criteria persist after at least 4 hrs in supine position
Primary outcome: 28-d Mortality

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Sepsis Group (N = 220)</th>
<th>Prone Group (N = 220)</th>
<th>Hazard Ratio or Odds Ratio with 95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality — any (%) or 28-d</td>
<td>71 (32.7; 26.4–39.0)</td>
<td>56 (25.5; 19.7–32.7)</td>
<td>0.58 (0.37–0.90)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for SOFA score</td>
<td>0.42 (0.26–0.66)</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality — any (%) or 96-h</td>
<td>84 (38.6; 31.2–46.4)</td>
<td>62 (28.2; 21.5–35.7)</td>
<td>0.44 (0.28–0.68)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for SOFA score</td>
<td>0.48 (0.32–0.75)</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary endpoints at 96-h — not included in the 28-d analysis</td>
<td>140 (63.1)</td>
<td>136 (61.9)</td>
<td>0.89 (0.61–1.30)</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Figure 2. Kaplan-Meier Plot of Probability of Survival from Randomization to Day 96.
Should we prone all our patients?

- PROSEVA replicates trends seen in some prior proning studies
 - Magnitude of difference much greater than in prior studies, for unclear reasons
 - More complications in supine group than expected (e.g. 13% incidence of cardiac arrest)
 - Control mortality near expected for this severity
- Centers were highly experienced with proning: No adverse events attributed to repositioning
- Video available on NEJM.org
- Most patients were treated with neuromuscular blockers
- Study authors: “Needs to be replicated”

Overview

- New definition of ARDS: The Berlin Definition
- Neuromuscular blockers
- Proning: PROSEVA trial
- Statins
- Warning
 - Long-term outcomes in ARDS
- Future therapies:
 - PETAL Network
 - Mesenchymal stem cells

Statins: Ineffective for VAP

- Multicenter RCT in France
- Patients on mechanical ventilation for at least 2 days and suspected of having VAP using clinical score
- Simvastatin 60 mg vs. placebo
 - Started on same day as antibiotics
 - Stopped for futility after enrollment of 300 patients
- Planned to enroll 1000 patients
- Mortality 21% in simvastatin group, 15% in placebo; p=0.10

Papazian, JAMA 2013
Statins: Ineffective for ARDS

- Statins for Acutely Injured Lungs in Sepsis trial
- Multicenter RCT in US, NHLBI ARDS Network
- Patients with ARDS and suspected/confirmed infection plus SIRS
- Rosuvastain 40 mg/20 mg vs. placebo
- Stopped for futility after 745 patients enrolled
- No difference in mortality or ventilator-free days

Overview

- New definition of ARDS: The Berlin Definition
- Neocellular blockers
- Profiling: PROSEVA trial
- Steroids
- Weaning
- Long-term outcomes in ARDS
- Future therapies:
 - PETAL Network
 - Mesenchymal stem cells

Effect of Pressure Support vs Unassisted Breathing Through a Tracheostomy Collar on Weaning Duration in Patients Requiring Prolonged Mechanical Ventilation

- Patients transferred to LTACH for weaning from prolonged ventilation (>21 days)
- Randomized to either weaning with pressure support or trach collar
- Took 10 years to enroll 500 patients
Trial Protocol Details

- Began with 5 day “screening procedure”
- Pts placed on trach collar
- Those who did not develop respiratory distress during 5 days were considered weaned = 160 of the 500 patients!
- Trach collar group: Max 12 hrs on first day
- Rested on ACVC overnight
- On day 3, trial of up to 24 hours of TC
- Pressure support group:
 - Assessed three times daily for decrease in PSV settings
 - Decrease of 2 cm H2O when possible, no more than 6 cm/day
 - Once PSV < 6 cm H2O for at least 12 hrs, trial TC

Weaning Study: Major Findings

- About 1/3 of patients transferred to LTACH for weaning were immediately weaned
- For the rest, trach collar trials superior to pressure support gradual reduction
- No difference in mortality between two groups
 - 51-55% at 6 months, 63% at 1 year
- Unblinded, long duration of trial
Overview

- New definition of ARDS: The Berlin Definition
- Neuromuscular blockers
- Breathing: PROSEVA trial
- Sepsis
- Weaning
- Long-term outcomes in ARDS
- Future therapies:
 - UTI-1: N-acetylcysteine
 - Mesenchymal stem cells

Long Term Outcomes of Lung Protective Ventilation

- Mortality in months years after ICU discharge is high
- Interventions that improve short-term outcomes do not always translate into long-term survival benefits
- Example: Corticosteroids in persistent ARDS, activated protein C in severe sepsis
- Impact of lung protective ventilation on longer term outcomes not known
- Observational study of 485 ARDS patients testing association between lung protective ventilation strategy and mortality at 2 years after ARDS onset
 - Four academic centers between 2004-2007

Needham DM et al, BMJ 2012

Long Term Outcomes of Lung Protective Ventilation

- Only 41% of ventilator settings were classified as “adherent” to lung protective ventilation
- Tidal volume ≤ 6.5 ml/kg predicted body weight
- Plateau pressure ≤ 30 cm water
- 37% of patients had no ventilator settings compatible with low tidal volume ventilation
- 86% of patients had less than half of settings adherent
- Mortality at 2 years was 64%
- After adjusting for other mortality predictors, risk of death over 2 years decreased by 3% for each additional “adherent” ventilator setting

Needham DM et al, BMJ 2012
Many patients with ARDS are not being ventilated with optimal lung-protective strategies. Survival benefit associated with lower tidal volumes appears durable. Observational study, so lung protective ventilation may be marker for other process of care variables. Confounding by indication: Sicker patients may be more difficult to ventilate with LTV. More efforts to disseminate and facilitate implementation of landmark critical care trials are needed.

Take-Home Points: Lung Protective Ventilation and Long-Term Outcomes

- Needham DM et al, BMJ 2012

Low Tidal Volumes for Everyone?

Association Between Use of Lung Protective Ventilation With Lower Tidal Volumes and Clinical Outcomes Among Patients Without Acute Respiratory Distress Syndrome

- 20 articles
- 2822 participants
- Risk ratio for ARDS 0.33 (95% CI 0.23-0.47)
- Number needed to treat = 11
- Risk ratio for mortality 0.64 (95% CI 0.46-0.89)

Serpa Neto A et al, JAMA 2012; Ferguson ND et al, JAMA 2012

Low Tidal Volumes in OR

- Multicenter double blind trial
- 400 adults undergoing abdominal surgery
- Randomized to lung protective ventilation (including PEEP, recruitment maneuvers) or nonprotective ventilation (10-12 cc/kg, 0 PEEP, no recruitment maneuvers)
- Composite endpoint: Major pulmonary and non-pulmonary complications
- Endpoint occurred in 10.5% of lung-protective group vs. 27.5% of controls; p=0.001
- Decrease in rates of intubation post-op, hospital LOS

Futier et al, NEJM 2013
Overview

- New definition of ARDS: The Berlin Definition
- Neuromuscular blockers
- Preoxygen: PROSEVA trial
- Glutamine
- Weaning
- Long-term outcomes in ARDS
- Future therapies:
 - PETAL Network
 - Mesenchymal stem cells

New ARDS Network

- Focused on prevention and early treatment
- PETAL:
 - Prevention and Early Treatment of Acute Lung Injury
- New network of 12 centers including UCSF beginning July 2014
- Trials will likely start Spring 2015

Mesenchymal Stem Cells for ARDS

- Bone marrow derived, from healthy adult donors
- Non-immunogenic, no HLA matching needed
- Administered in other clinical settings to >2000 patients
- Excellent efficacy in experimental models of ARDS, including large animal models, ex vivo human lung
- Mechanism: Release of paracrine factors, mitochondrial transfer
- Phase I trial just completed (n=9); no safety concerns
- Phase II enrollment ongoing now at UCSF and 3 other centers (Stanford, Mass. General, Pittsburgh)
- www.stemcellsards.ucsf.edu
• Berlin definition of ARDS leaves the essence of the syndrome largely unchanged, clarifies several aspects
• Proning and neuromuscular blockade may confer mortality benefit for severe ARDS
• For difficult to wean patients, trach collar may be best
• Low tidal volume ventilation remains under-utilized and has a durable mortality benefit – may be good for all ventilated patients
• Statins are not a cure-all
• New approaches to therapy are needed:
 • Stem cells are being tested
 • Focus on prevention and early treatment

Thank you!