Transfusion Ratios in Trauma

Preston Maxim, MD
Assoc. Professor of Emergency Medicine
San Francisco General Hospital

Epidemiology
- ~180,000 deaths 2007 due to trauma
- 25% trauma patients require 1 unit of PRBC and only 25% of those require more than 4 units of PRBC
- Hemorrhagic shock – cause of 86% of all civilian preventable deaths due to trauma
- 2/3 of hemorrhagic deaths occurred in the first 6 hours

Case
Paramedics ring down: 32 yo M shot in butt, run over by car and then beaten with a snow shovel.
SBP= 85, HR = 110, RR = 20

- Is the patient likely to be:
 1. manageable with fluid resuscitation
 2. in hemorrhagic shock
 3. in shock and require only a couple of units of blood
 4. in shock and require Massive Transfusion

Pre-Hospital SI and Massive Transfusion
- Shock Index - HR/SBP – normal 0.5 to 0.7
- Journal of Trauma 2011 70(2): 384-390
- 8,111 patients with non-penetrating trauma & SBP >90 in the field had calculated SI. 3.4% require MT.
- SI:
 - >0.9 – 1.1 --- 1.5 RR of MT
 - >1.1 – 1.3 --- 5.6 RR of MT
 - >1.3 --- 8.1 RR of MT
- Our patient’s SI is 1.29
ABC score for MT

- ABC score (>2 predicts MT):
 - HR >120 – 1 point
 - SBP < 90 – 1 point
 - Penetrating injury – 1 point
 - Positive FAST – 1 point
- 75% sensitive and 86% specific for MT requirement

PROMMTT

- Feasibility study for PROPR
- ABC > 2 predicts MT
- ABC score – 73% sensitive and 86% specific for MT
- ABC score and clinician gestalt – 85% sensitive and 89% specific

Case - continued

32 yo M poly trauma (shot, beaten and run over)

Field SI of 1.29
Vitals: 85/P 110 20
FAST negative
Patient clearly injured but no active exsanguination
ABC = 2 (BP and HR)

Do you want to:
1. Give 2 L NS and re-assess
2. Do nothing and go to CT
3. Give 2 units PRBC and re-assess
4. Activate MT protocol

ACS Committee on Trauma Recommendations

Give 2 L NS and re-assess

"An initial fluid bolus is given as rapidly as possible. The usual dose is one to two liters for an adult and 20 ml/kilogram for a pediatric patient."

-Advanced trauma life support course for physicians, student manual.
Traditional Rationale

- Animal studies by Shires et al. (1964) and Dillon et al. (1966) found that following a severe hemorrhage:
 - Animals receiving volume expansion had a greater incidence of survival
 - Animals receiving no volume expansion had both a greater incidence of mortality and major organ injury
- Furthermore, time to normalize blood pressure correlated with good outcomes

The Counter Argument

- Bickell et al. (1989) series of animal studies show worsening outcome with fluid resuscitation, which is thought due to:
 - Increasing blood pressure increased the rate of bleeding
 - Increased blood pressure dislodged clot
 - Fluid resuscitation diluted circulating clotting factor

Why the Difference?

- The studies by Shires et al. (1964) and Dillon et al. (1966) used a standardized hemorrhage from which the animals were resuscitated
- Bickell et al. (1989) used an uncontrolled hemorrhage model with continuing hemorrhage during the resuscitation
- The earlier model may more accurately mimic the situation in blunt trauma, whereas the uncontrolled hemorrhage model may more accurately mimic the situation of penetrating trauma patients

Bickell et al. (1994)

Do Nothing and go to CT

- Randomized 598 patients
- Entrance criteria:
 - Penetrating torso injury due to GSW or SW
 - Initial systolic blood pressure less than or equal to 90 mm Hg
- 289 patients were assigned to the delayed resuscitation group
- 309 patients were assigned to the immediate resuscitation group
Results

• Survival to the operating room:
 • Immediate resuscitation - 87%
 • Delayed resuscitation - 90%
• Post operative complications (p=.08):
 • Immediate resuscitation - 30%
 • Delayed resuscitation - 23%
• Survival to discharge (p=.04):
 • Immediate resuscitation - 62.4%
 • Delayed resuscitation - 70.2%
• Mean pre-OR fluid resuscitation:
 • Immediate resuscitation - 2478 cc
 • Delayed resuscitation - 375 cc

Limitations of Bickell et al.’s Data

• Excluded those randomized in the field, but dead on arrival or in the ED
• Only looked at patients with isolated penetrating torso injuries
 • Patients with multi-system injuries may have other indications for blood pressure support, especially patients with concomitant head injuries
 • Can’t be easily generalized to the management of blunt trauma

What about blood?

• Early 1940’s – blood components with different shelf lives
• Vietnam War - increased blood demand and misreading of Shires data drives switch to component resuscitation
• Component shelf life:
 • Fresh whole blood – 24 hours at room temperature
 • PRBC – 42 days at 4 degrees C.
 • FFP – 12 months at -20 degrees C.
 • Platelets – 5 days room temperature
• One unit whole blood = 1 unit PRBC, 1 unit FFP & 1 unit platelet

Data from Iraq/Afghanistan

• Holcomb et al. (2007) take a retrospective sample of 246 MT patients (>10 PRBC in 24 hours)
• 80-85% combat death non-preventable, 70% of the remaining deaths due to hemorrhagic shock
• Divide into 3 groups:
 1. 1:8 plasma-RBC ratio
 2. 1:2.5 plasma-RBC ratio
 3. 1:1.4 plasma-RBC ratio
Iraq Data

- Overall Mortality:
 1. 1:8 ratio – 85%
 2. 1:2.5 ratio – 34%
 3. 1:1.4 ratio – 19%
- Mortality due to hemorrhage:
 1. 1:8 ratio – 92.5%
 2. 1:2.5 ratio – 78%
 3. 1:1.4 ratio – 37%
- Most current MT protocols aim for a 1:3 ratio

PROPPR

- Emergency waiver of consent randomized trial to start in July
- Prospectively compare 1:1:1 vs. 1:1:2 ratios of plasma:platelets:rbc
- Multiple endpoints to the study
 - 24 hour survival benefit
 - Survival to discharge benefit
 - Evidence of trauma induced coagulopathy
 - If TIC, does resuscitation ratio change 6 hour TIC

Conclusion

- ABC score with clinical gestalt is the best predictor of who needs Massive Transfusion
- Normal saline is not what is coming out of the patient... we are moving back to something close to whole blood resuscitation in hemorrhagic shock.
 - PROPPR may not be able to demonstrate survival difference between 1:1:1 and 1:1:2 ratio
 - Early data suggests both ratios are better than current practice

Conclusion

- Reasonable to delay aggressive pre-hospital resuscitation in mentating isolated penetrating torso injuries
 - Study similar to Bickell et al.’s will probably never be done in blunt trauma
 - In the absence of evidence to the contrary, controlled hemorrhage may be the best model for blunt trauma
 - For now these patients should receive aggressive volume resuscitation