Rh Disease & Other Alloimmune Hemolytic Disorders in Pregnancy: A Fresh Look at an Old Problem

Lena H. Kim, MD
Assistant Professor
Maternal-Fetal Medicine, UCSF

AIM CONFERENCE: Thursday June 5, 2014

Rh Disease:
(& Other Alloimmune Hemolytic Disorders in Pregnancy)
A Fresh Look at an Old Problem

Lena H. Kim, MD
Assistant Professor
Maternal-Fetal Medicine, UCSF

DISCLOSURES

• I have nothing to disclose.

OBJECTIVES

• Rh alloimmunization
 – Background
 – Pathophysiology
 – Management
 – Treatment
• Other common RBC antibodies

UCSF
BACKGROUND

• Red blood cells (RBC) have hundreds of antigens
• D antigen is part of the Rhesus blood group
 – Rh system: D, C, c, E, e, G
• “Rh(-)” is a misnomer
 – Rh(-) = D(-)

PATHOPHYSIOLOGY

• Rh(-) mother pregnant with Rh(+) fetus
• Maternal exposure to fetal RBCs
• Maternal B-cells recognize D antigen
• Short-lived IgM response
• Next pregnancy memory B-cells
 – Rapid development of anti-D IgG antibodies
 – IgG antibodies cross the placenta
 – Fetal hemolytic anemia

BACKGROUND

• Prevalence of Rh(-)
 – Basques 30-35%
 – Caucasians 15%
 – African 4-6%
 – Asian <1%
• Prevalence of Rh alloimmunization
 – 6.8/1000 live births in the U.S. 2003

PATHOPHYSIOLOGY

• Possible etiologies of alloimmunization
 – Fetomaternal hemorrhage
 – Blood transfusion error: D antigen variants
 • T&S Rh(-) but may weakly express D
 • Weak D also called D^u antigen
 • Can cause anti-D antibody production in Rh(-) recipient
PATHOPHYSIOLOGY

Etiology of unexplained alloimmunization
- Unrecognized early miscarriages
 - Fetal RBCs express D antigen by day 38 (7w3d)
- Grandmother theory
 - Rh(+) mother pregnant with female Rh(-) fetus
 - Mother’s RBCs enter daughter’s circulation at birth
 - Rh(-) baby develops anti-D antibodies
 - Anti-D antibodies at 1st T&S in her 1st pregnancy

Variable amounts of exposure \(\rightarrow \) antibodies
- 1960s study of exposed Rh(-) male prisoners
 - As little as 0.1 mL \(\rightarrow \) antibodies
 - 2 exposures 10 mL + 5 mL \(\rightarrow \) 70% antibodies
 - As much a 450 mL \(\rightarrow \) only 80% antibodies
- Slow antibody response 5-15 weeks
 - 1st pregnancy usually not at risk of fetal anemia

Fetomaternal hemorrhage common
- Maternal presence of 0.01 mL fetal RBCs
 - 1st trimester 3%
 - 2nd trimester 12%
 - 3rd trimester 46%

Transplacental passage of maternal antibodies
- Anti-D IgG antibodies
- Antibodies opsonize fetal RBCs
 - Fetal RBC phagocytosis by splenic macrophages
- Hemolytic disease of the fetus or newborn
 - HDN or HDFN
- Fetal immune hydrops
 - Erythroblastosis fetalis
- IUFD or neonatal morbidity & mortality
MANAGEMENT

• Prevention
 – Identify Rh(-) women
 • T&S at 1st prenatal visit
 • Earlier T&S if bleeding and pregnant
 • Consider T&S at preconception counseling visits
 – Educate Rh(-) women about Rhogam
 – Father of the baby Rh testing
 • Rh positive → 60% heterozygous

MANAGEMENT

• Rhogam (anti-D immune globulin)
 – Pooled plasma with high anti-D antibody titer
 • Male volunteers purposely sensitized
 – 300mcg standard dose
 • Enough for 15mL fetal RBCs = 30mL whole blood
 • Covers 10% of average term newborn’s total blood volume
 – “Mini-rhogam” 50mcg
 • 2.5mL fetal RBCs
 • Lasts ~12 weeks
 • 15-20% still have low titer <1:4 at term
 • Anti-D antibody detection as long as ~26 weeks later

MANAGEMENT

• Rhogam routine dosing in the United States
 – 300mcg
 • 50mcg up through 12 weeks GA
 – Recheck antibody screen prior to administration
 – 28 weeks GA
 – Postpartum within 72hr of delivery
 • Up to 28 days later might still efficacious
• United Kingdom & Canada routine dosing
 – 100mcg
 – 28 + 34 weeks GA

MANAGEMENT

• Rhogam indicated if risk of fetomaternal hemorrhage
 – Pregnancy loss: SAB, TAB, ectopic pregnancy
 – Threatened abortion: vaginal bleeding
 – Invasive procedures
 • CVS, amniocentesis, MFPR, fetal surgery
 – Placental abruption
 – Bleeding previa
 – Trauma
 • MVA, ECV
 – IUFD
MANAGEMENT

- Rhogam mechanism of action
 - Anti-D prophylaxis: passive anti-D IgG
 - Epitope masking
 - Fetal RBC D antigens covered by passive anti-D IgG
 - Fetal RBCs cleared/destroyed without alloimmunization
 - INCOMPLETE epitope masking
 - Down-regulation of antigen-specific B cells

- Before the standard use of rhogam:
 - High alloimmunization rates
 - 2 non-compatible pregnancies → 16%
 - After standard use of postpartum rhogam:
 - Lowered alloimmunization rate → 2%
 - And 3rd trimester + Postpartum rhogam:
 - Even lower alloimmunization rate → 0.1%

- Testing for fetomaternal hemorrhage
 - Rosette test
 - Qualitative → +/- result
 - Kleihauer-Betke
 - Quantitative
 - Volume of hemorrhage
 - % fetal blood cells x 50

MANAGEMENT

- Four rhesus immune globulin brands
 - RhoGAM® (Ortho-Clinical Diagnostics, NY)
 - IM due to IgA contaminants
 - HyperRHO® (Talecris, NC)
 - IM due to IgA contaminants
 - Rhophlac® (ABO Pharmaceuticals, CA)
 - IV or IM (IgG only)
 - Win-Rho-SDF® (Cangene Corporation, Canada)
 - IV or IM (IgG only)
 - Thimerosal free
MANAGEMENT - OLD

- Maternal anti-D antibodies → Fetal Rh status
 - Father of the baby (FOB) Rh status
 - Genotype if Rh(+)
 - 60% chance heterozygote
 - If heterozygote, 50% chance fetus will be Rh(-)
 - Amniocentesis if FOB heterozygous or unknown
 - Serial anti-D titers q4 wks if fetus Rh(+) or ?
 - Increase titers to q2 weeks after 24 wks GA
 - Laboratory critical titer >1:8 – 1:32

MANAGEMENT - NEW

- Maternal anti-D antibodies → Fetal Rh status
 - Father of the baby (FOB) Rh status
 - Genotype if Rh(+)
 - 60% chance heterozygote
 - If heterozygote, 50% chance fetus will be Rh(-)
 - Amniocentesis if FOB heterozygous or unknown
 - Maternal serum cell free fetal DNA
 - Rh D gene on short arm chromosome 1
 - Apoptosis of placental trophoblasts
 → fetal DNA in maternal system
 - Europe using cffDNA routinely for fetal Rh
 - Avoid unnecessary rhogam in ~40% of Rh(-)♀
 - 99.3 – 100% sensitivity

AUDIENCE RESPONSE QUESTION

Maternal serum cell free fetal DNA (NIPT) is useful in the management of Rh alloimmunization because:

A. You should rule out aneuploidy before considering treatment of fetal anemia
B. Fetal gender affects prognosis
C. NIPT can detect fetal Rh status

MANAGEMENT - NEW

- Maternal serum cell free fetal DNA
 - Rh D gene on short arm chromosome 1
 - Apoptosis of placental trophoblasts
 → fetal DNA in maternal system
 - Europe using cffDNA routinely for fetal Rh
 - Avoid unnecessary rhogam in ~40% of Rh(-)♀
 - 99.3 – 100% sensitivity

Clausen et al. Transfusion 2012;52(4):752
Wikman et al. Obstet Gynecol 2012;120(2Pt1):227
MANAGEMENT - OLD

• Rise in titers or previously affected pregnancy
 – Referral to MFM for co-management
• Antenatal testing starting at 32 weeks GA
• Amniocentesis for ΔOD450
 – Bilirubin levels in the amniotic fluid
 – Liley curve → Queenan curve
 – Predict severity of fetal anemia

AUDIENCE RESPONSE QUESTION

Moderate to severe fetal anemia can be detected using ultrasound doppler of the:

A. Umbilical artery
B. Umbilical vein
C. Ductus venosus
D. Middle cerebral artery

MANAGEMENT - NEW

• Rise in titers or previously affected pregnancy
 – Referral to MFM for co-management
• Antenatal testing if viable gestational age
• Amniocentesis for ΔOD450
 – Liley curves to predict severity of fetal anemia
• Middle cerebral artery peak systolic velocity (MCA PSV)

MANAGEMENT - NEW

• MCA PSV
 – Non-invasive screening for severe fetal anemia
 – Weekly ultrasound with doppler > 18 wks GA
 – Avoids ~50% of unnecessary PUBS
 – Detection of moderate - severe fetal anemia
 • MCA PSV ≥ 1.5 MoM
 • Sensitivity 100%
 • False positive rate 12%
 • Not validated for >35 weeks gestation

Mari et al. NEJM 2000;342:9-14
TREATMENT

• Percutaneous umbilical blood sampling (PUBS)
 – Cordocentesis or funipuncture
 – Confirm severe anemia
 – Calculate ideal transfusion amount
 – 1-2% procedure-related rate of fetal death
• Intrauterine transfusion (IUT)

TREATMENT

• Intraperitoneal transfusion
 – Sir William Liley 1963
• IUT possible with improved ultrasound
 – Perinatal survival rates ~90%
 • Lower if hydrops, ~78%
 – Long-term normal neurologic outcomes >90%
 – High-risk for needing serial transfusions until 3 months of life due to persistent maternal antibodies

TREATMENT

• Late preterm/early term delivery
 – MCA PSV stays <1.5 MoM → 38 week delivery
 – Fetal anemia + >35 wks GA → delivery
• Antepartum phenobarbital in certain cases
 – Maturation of the fetal liver for bilirubin clearance

TREATMENT

• Investigational therapy for women with RH disease & prior severe early fetal anemia
 – Maternal plasmapheresis
 • Single volume plasmapheresis QOD x 3 at 12wks GA
 – IVIG following final plasmapheresis
 • 1g/kg slow infusions 2 days in a row
 • 1g/kg slow infusion every week until 20wks GA

TREATMENT

• Preconception counseling
• Prevent subsequent pregnancy with HDFN
 – Future conception with Rh(-) donor sperm
 – IVF with preimplantation genetic diagnosis
 • Father of the baby Rh D heterozygote
 – Gestational surrogate

• Future prevention of severe fetal anemia
 – Immunization to paternal leukocytes
 • Rabbit model
 – Ameliorate anti-D response in subsequent pregnancy
 • Intranasal spray RhD peptides
 • Transgenic mouse model

AUDIENCE RESPONSE QUESTION

The number of other non-D RBC antigens that can cause HDFN is:

A. 1 B. 2-5 C. 6-10 D. >10

OTHER BLOOD GROUP SYSTEMS

• Non-D Rh
 – E, C, c Mild to severe HDFN
 – Lewis & I
 – Le^a and Le^b No risk (IgM), routine care
 – I No risk (IgM), routine care

• Kell
 – K Mild to severe HDFN
 – k, Ko, Kp^{a+b}, J_s^{a+b} Low risk, routine care
 – Transfused blood not cross-matched for Kell

OTHER BLOOD GROUP SYSTEMS

• Duffy
 – Fya Mild to severe
 – Fyb, By3 Low risk

• Kidd
 – Jka Mild to severe
 – Jkb, Jk3 Low risk

• MNSs
 – M, S, s, U, Mia Mild to severe
 – N Low risk

THANK YOU

• UCSF MFM Division Director
 – Dr. Mari-Paule Thiet

• UCSF PUBS/IUT mentors
 – Dr. Julian T. Parer
 – Dr. Larry Rand

• Alloimmunization expert
 – Dr. Kenneth J. Moise

REFERENCES

• ACOG Practice Bulletin 75, August 2006
• Clausen et al. Transfusion 2012;52(4):752
• Fung et al. J Obstet Gynaecol Can 2003;25(9):765
• Hall et al. Blood 2005;105:2175
• Mari et al. NEJM 2000;342:9-14
• Moise KJ. Obstet Gynecol 2008;112:164
• Pollack et al. Transfusion 1971;11(6):333
• vanKamp et al. Am J Obstet Gynecol 2005;192:171
• Wikman et al. Obstet Gynecol 2012;120(2Pt1):227