Adult degenerative scoliosis: Is it worth the risk?

Jens R. Chapman, M.D.
HansJörg Wyss Professor and Chair
Department of Orthopaedic Surgery and Sports Medicine
Joint Professor of Neurological Surgery
Chief of Spine Service, UW Medicine

Degenerative Scoliosis

1. Surgery?
2. Complications
3. New directions

Reality check

Disclaimers:
HansJörg Wyss Foundation: Endowed Chair
Renovis: Stock Holder
AOSpine North America: Past Chair, Speaker, Board, Fellowship and Research support
Cervical Spine Research Society: Board Member
Evidence Based Spine Journal: Editorial Chair
Global Spine Journal: Deputy Editor-in-Chief
Spine: Deputy Editor
The Spine Journal: Editorial Board
IP:
• SpineSage.com
• Spine SCGAP
• Paintracker
Unanswered:
1. Why does this happen?
2. What to do?
Motion is Life, Life is Motion

Silver Tsunami

Systemic effects
- Pain
- Cardiopulmonary
- Digestive
- Neurologic
- Premature Death

The Collapsing Human Spine

Sagittal profile of the elderly

50 asymptomatic volunteers 70-85 yo
- Average kyphosis: 52° [29-79°]
- Average lordosis: -57° [-96° -20°]
- C7 plumb: 40 mm in front of Post. sup aspect of S1

The Osteoporosis Crisis

1.5 million osteoporotic fractures occur in the U.S. each year

90% of all women over the age of 75 are osteopenic
< 20% of orthopaedic surgeons are recommending osteoporosis follow-up after a hip fracture
Fact sheet: Primary Degenerative Scoliosis

- Average age of presentation: 60 y.o.
- Incidence (est.): 6% (cumulative)
- Natural progression: 3°/a
- Female/male = 70/30%
- Primary complaint: LBP + claudication (foraminal stenosis)

Adult scoliosis surgery: Towards a realistic risk assessment

Degenerative Scoliosis: Poor Prognosis

- Lumbar curve > 30°
- Dynamic instability
 - Axial
 - Sagittal
- Progressive neurogenic claudication
- Previous laminectomy at curve apex
- Lateral listhesis L3/4 > 20%
Nonoperative treatment

Bracing not feasible

Postural and functional treatment: Mandatory prerequisite

Degenerative Scoliosis:

Is a big time surgery really the only answer?

Degen. Scoliosis: Micro – decompression?

• Well intended
• Ineffective: lack of lateral decompression
• Dangerous: risk of further destabilization

Degen. Scoliosis: Focal fusion?

Limited invasiveness

Junctional collapse
Restoration of balanced spine impossible
Hardware complications
Revision reconstruction more complex
Multilevel fusion into Flat Back

DEGENERATIVE SCOLIOSIS:
Complications

- **Trammel 91**
 - 21-40 y/o 27% 6% MAJOR
 - 41-60 y/o 41% 14% MAJOR
 - 61-85 y/o 64% 24% MAJOR

DEGENERATIVE SCOLIOSIS:
Complications

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-40 y/o</td>
<td>Trammel 80%</td>
</tr>
<tr>
<td>41-60 y/o</td>
<td>McDonald 41%</td>
</tr>
<tr>
<td>61-85 y/o</td>
<td>McDonald 64%</td>
</tr>
</tbody>
</table>

SRS Summary statement 2002
Complications of Adult Scoliosis –
Ant/Post

Spine. 2001 Apr 15;26(8):973-83
Long-term complications in adult combined surgery a comparison of primary to revision patients.
Lapp MA, Bridwell KH, Lenke LG, Derkatch A, Cavanaugh DA, Lee KH, Dupuis JY
• 44 patients: A + P
• Minimum 2-yr followup (avg. F/U 42 m)

• Major complications 12% (revision) 22% (primary)
 - deep wound infection
 - pseudarthrosis
 - transition breakdown
 - neurologic deficit
 - death

• Minor complications 22-23%
 - asympt. instrumentation failure (no loss of correction)
 - hardware removal
 - junctional kyphosis (5-10 degrees)
 - subsequent disc space narrowing of 2-5 mm without clinical symptoms.

942 patients
Any type of fusion > 2 levels
Age 54 a
Stay: 13.5 d
Complications 87 %
Mortality 14 patients (2%)
Intraoperative complications 10.5 %
Postoperative complications 73.5 %

High risk
High reward?

WHY?

103 patients 2003-2007
Avg age 68a
Stay: 12 d (ICU 2.7d)
Postop rehab 58%
1 year mortality 3%
Medical complications 12%
Surgical complications 35% (2yrs)
New radicular symptoms 17%
Results

<table>
<thead>
<tr>
<th></th>
<th>LOS</th>
<th>ICU Days</th>
<th>DC to SNF</th>
<th>Medical Complication</th>
<th>Surgical Complication</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.001</td>
<td>0.006</td>
<td>0.13</td>
<td>0.15</td>
<td>0.62</td>
<td>0.30</td>
</tr>
<tr>
<td>ASA Class</td>
<td>0.02</td>
<td>0.18</td>
<td>0.10</td>
<td>0.60</td>
<td>0.10</td>
<td>0.90</td>
</tr>
<tr>
<td># of Lumbar's</td>
<td>0.56</td>
<td>0.44</td>
<td>0.88</td>
<td>0.16</td>
<td>0.23</td>
<td>0.76</td>
</tr>
<tr>
<td># of Fusion Levels</td>
<td>0.001</td>
<td>0.004</td>
<td>0.28</td>
<td>0.25</td>
<td>0.43</td>
<td>0.49</td>
</tr>
<tr>
<td># of Interbody Spacers</td>
<td>0.39</td>
<td>0.16</td>
<td>0.43</td>
<td>0.96</td>
<td>0.90</td>
<td>0.69</td>
</tr>
<tr>
<td>EBL</td>
<td>0.35</td>
<td>0.56</td>
<td>0.01</td>
<td>0.30</td>
<td>0.70</td>
<td>0.5</td>
</tr>
<tr>
<td>Operative Time</td>
<td>0.02</td>
<td>0.8</td>
<td>0.77</td>
<td>0.36</td>
<td>0.40</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th></th>
<th>LOS</th>
<th>ICU Days</th>
<th>DC to SNF</th>
<th>Medical Complication</th>
<th>Surgical Complication</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision</td>
<td>0.20</td>
<td>0.13</td>
<td>0.92</td>
<td>0.03</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>Staged</td>
<td>0.001</td>
<td>0.005</td>
<td>0.48</td>
<td>0.89</td>
<td>0.03</td>
<td>0.85</td>
</tr>
<tr>
<td>HTN</td>
<td>0.27</td>
<td>0.08</td>
<td>0.94</td>
<td>0.63</td>
<td>0.59</td>
<td>0.50</td>
</tr>
<tr>
<td>Heart Disease</td>
<td>0.26</td>
<td>0.06</td>
<td>0.21</td>
<td>0.88</td>
<td>0.57</td>
<td>0.92</td>
</tr>
<tr>
<td>Renal Disease</td>
<td>0.90</td>
<td>0.14</td>
<td>0.13</td>
<td>0.04</td>
<td>0.14</td>
<td>0.04</td>
</tr>
<tr>
<td>Pulmonary Disease</td>
<td>0.10</td>
<td>0.23</td>
<td>0.35</td>
<td>0.23</td>
<td>0.14</td>
<td>0.03</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.72</td>
<td>0.15</td>
<td>0.71</td>
<td>0.09</td>
<td>0.23</td>
<td>0.60</td>
</tr>
</tbody>
</table>

5 Intervention strategies

1. Fixation /stiffness related
2. Bone healing
3. Approach related
4. Blood loss
5. Using IT

Approaches towards an answer

What can we do?
Shared decision making

Use data

Risk modeling

SpineSage.com

Surgical Invasiveness Examples

1. Puncture
2. LUMA &/or percutaneous, CSM foramintomy
3. LUMA &/or percutaneous, CSM foraminotomy
4. LUMA &/or percutaneous, posterior lumbosacral fixation
5. LUMA &/or percutaneous, anterior lumbar fixation
6. Endoscopic

Lumbo-sacral fixation:
Complex constructs
Improvisational
Non-rigid

Junctional Problems:
The bottom

Iliac Screws
Screws below posterior superior iliac crest
Low profile connectors
Rostral junction lesions

Junctional Problems: The top

64 yo female
Severe osteoporosis
Teriparatide
64 yo female
Severe osteoporosis
Teriparatide

The Middle

DEGENERATIVE SCOLIOSIS
- 33% PSEUDOARTHROSIS
 • 4% IDIOPATHIC
- Correlates inversely with patient satisfaction
 • Emami et al, Spine 2002

Nonunions
Offlabel use of bone morphogenic proteins?

Eccentric PLIF for Deformity Correction
DEGENERATIVE SCOLIOSIS

Source of morbidity:

Invasiveness anterior surgery?

Can we do better?
143 scoliosis surgery patients

Retrospective study with historic matched controls
52 Staged 7 d
90 Non-staged
Staged: Age and Invasiveness higher

Blood loss

Does staging > 21 days help?
Not staged (n=29) vs Staged (n=34) patients
Anterior and posterior surgery

<table>
<thead>
<tr>
<th>Timing of Staging?</th>
<th>Not staged</th>
<th>Staged</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBL</td>
<td>4.5l</td>
<td>4.0l</td>
</tr>
<tr>
<td>LOS</td>
<td>14d</td>
<td>12d</td>
</tr>
<tr>
<td>Complications</td>
<td>35%</td>
<td>18%</td>
</tr>
<tr>
<td>ODI's</td>
<td>worse</td>
<td>better</td>
</tr>
</tbody>
</table>

- Transfusions in staged
- 11/90 staged ‘failures’ (12% not completed)
- No differences in complications

Antifibrinolytics? Cell saver?

Cell saver > 4% is detrimental
Use data to drive practices

How do I even know?

All Fusions: Current Smokers

Insulin used of glucose > 200
All Fusions: Current Opioid Use

20th to 21st Century: Degenerative scoliosis

Increasing problem
No prevention
No effective nonoperative treatment
Complications underreported
Limited follow-up

Increasing the safety of surgery:
Staging
Reducing incidence of infection
Optimizing patients for surgery
Fusion
Prevention of Adjacent segment pathology

Using IT and Outcomes for ALL patients
Degen. Scoliosis: Comprehensive Solution

- Thoraco - lumbo - pelvic Instrumentation
- Lumbar decompression (L1- S1)

1. Anterior + posterior Or posterior alone (PLIF’s)
2. How high? T2 - T10
3. How low? L5 or S-1 Ala or Ilium?

78-year-old woman c/o LBP L groin pain thoracic pain

Scoliosis: Diagnostics

- Plain radiographs
 - Full length standing ap / lateral X -
 - Recumbent ap / lat L-Spine
 - Flexion / extension
- MRI
 - Screening and minor (< 20° curves)
- CT - Myelography
 - Major curves (> 20°)
 - Revisions
 - Preoperative planning

"Dynamic Instability"
Assessment of Global Balance

- Long cassette including femurs
- **Femoral axis line**
- **C7 offset** - measurement perpendicular to femoral axis line to center of C7
- Global imbalance quantified but location of deformity must be defined

Overriding presenting symptoms

Disabling low back pain and inability to stand erect

Assessment of Global Balance

- Theoretical advantages of this global assessment
 - Includes dynamic hip and knee contractures
 - Functional muscle contribution included
 - Helps with planning of single vs. multiple level procedure