Y- Balance Testing in Anterior Cruciate Injuries and Following Reconstruction

Brian Lau¹ MD, Lauren Tufts² BS, Richard Souza² DPT PhD, Xiaojuan Li² PhD, Brian Feeley¹ MD, Christina Allen¹ MD, C. Benjamin Ma¹ MD
1. UCSF Department of Orthopaedic Surgery.
2. UCSF Department of Radiology and Biomedical Imaging.

Disclosures

• Lau, Tufts, Souza, Li, Feeley, Allen:
 — No Disclosures
• Ma:
 — Educational support from Zimmer
 — Research support from Zimmer, Histogenics, Moximed

• Study Funding:
 — AOSSM Genzyme Osteoarthritis Grant for Clinical Research
 — NIH/NIAMS P50 AR060752

Introduction

• ACL injuries are common
• ACL-deficient (D) knee leads to instability
• Instability related to balance ---> postural control and functional performance
• Balance testing may be able to assess functional deficits in ACL-D knees and recovery after reconstruction

P50 ACL Study

• Prospective Study of 50 patients with ACL injury
• Study to investigate changes in cartilage health using quantitative imaging, knee kinematics using quantitative MR imaging and kinetic testing using motion analysis and functional evaluations
• Longitudinal ACL observational study at baseline (after injury), then 6 months, 1 year, 2 years, and 3 years (after reconstruction)
• Goal is to understand the natural history of post-traumatic arthritis following ACL injury and reconstruction and identifying ways to recognize patients earlier in the time course
Introduction

- Static Balance testing has been criticized as not sufficiently challenging enough for physically active patients
- Star Excursion Balance Testing (SEBT) is a dynamic test that requires strength, flexibility, and proprioception
 - Shown to be reliable measure that sufficiently challenges active patients
 - Used identify chronic ankle instability, assess physical performance, and identify athletes at greater risk of lower extremity injury

Purpose & Hypothesis

- Star Excursion Balance Test uses 8 different positions for each leg

Methods

- Y-Balance testing:
 - 3 of 8 Positions
 - Equally Effective
 - Improved efficiency and repeatability
 - Intrarater reliability 0.85-0.91
 - Interrater reliability 0.99-1.0

Results

Discussion

Purpose and Hypothesis

Baseline (after ACL injury and prior to reconstruction)

- **Purpose**: To evaluate balance in ACL-D knees, contralateral knees, and healthy controls
- **Hypothesis**: ACL-D patients will have less balance compared to contralateral knees and healthy controls

6 Months (after ACL reconstruction)

- **Purpose**: To evaluate affect of ACL reconstruction on balance and relationship of Y-balance with other functional tests
- **Hypothesis**: ACL reconstruction will improve balance and Y-balance will correlate with other functional testing
Methods

<table>
<thead>
<tr>
<th></th>
<th>Baseline ACL-D</th>
<th>6 Months ACL-R</th>
<th>Healthy Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>45</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>29.2 +/- 8.7</td>
<td>29 +/- 8.6</td>
<td>30.3 +/- 5.1</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.7 +/- 2.8</td>
<td>23.9 +/- 2.8</td>
<td>23.4 +/- 1.9</td>
</tr>
<tr>
<td>Male/Female</td>
<td>24/21</td>
<td>17/14</td>
<td>8/6</td>
</tr>
<tr>
<td>Time from injury to baseline evaluation (days)</td>
<td>53.65 +/- 35.2 days</td>
<td>189.16 +/- 30.38 days</td>
<td></td>
</tr>
</tbody>
</table>

Exclusion Criteria: Other ligamentous injuries, meniscal injury requiring repair, previous history of arthritis, knee trauma, or surgery.

1) All patients underwent Y-balance testing- 3 trials (Max)
2) Max Recorded value taken and normalized by leg length
3) Trials done for each leg
4) At 6 months Single Leg Jump (distance) and 6-meter Timed Hop (time) was performed

Introduction Purpose & Hypothesis

Methods

Results Discussion

Baseline ACL-D Knee vs Contralateral Knee vs Healthy Control Knee

* Indicates p < 0.05

ACL-D knee and Contralateral Knee have similar reach and have less reach in Posterior Medial and Posterior Lateral direction compared to Healthy Controls

6 Months ACL-R Knee vs Contralateral Knee vs Healthy Control Knee

* Indicates p < 0.05

6 months following ACL reconstruction and rehabilitation reach for ACL-R knee and Contralateral knee are similar and match Healthy Controls

ACL-Injured Knee Longitudinal Baseline to 6 Months Following Reconstruction

* Indicates p < 0.05

Posterior-Medial Reach significantly improved and meet Smallest Detectable Difference
Contralateral knee Longitudinal Baseline to 6 Months Following Reconstruction

Introduction

Purpose & Hypothesis

Methods

Results

Discussion

Results

Posterior-Medial Reach significantly improved and meet Smallest Detectable Difference

* Indicates p < 0.05

<table>
<thead>
<tr>
<th>Reach Distance (% leg length)</th>
<th>Baseline</th>
<th>6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallest Detectable Difference:</td>
<td>Anterior= 6.87</td>
<td>PM= 8.15</td>
</tr>
</tbody>
</table>

Discussion

- Herrington et al demonstrated with Y-balance testing that ACL deficient and Contralateral knees had similar reach and less than healthy controls at mean 11 months after injury.
- Our study is unique as it follows patients before and after ACL Reconstruction and demonstrates return of balance function at mean 8 months after injury (6 months after reconstruction) and we demonstrate that Y-balance testing correlates with other functional tests.
- Y-Balance testing may be a safe and cost effective way to assess functional deficits and recovery for ACL injuries.

References

Acknowledgements

C. Benjamin Ma, MD
Richard Souza, PT PhD
Brian Feeley, MD
Christina Allen, MD
Lauren Tufts, BS
Drew Lansdown, MD
Musa Zaid, B.S.
Xiaojuan Li, PhD

UCSF Orthopedic Surgery Residents
UCSF Department of Orthopaedic Surgery
Musculoskeletal Quantitative Imaging Group
UCSF Department of Radiology

Funding:
AOSSM Genzyme Osteoarthritis Grant for Clinical Research
NIH/NIAMS P50 AR060752