Pedal Access:

When to Do It
How Does it Fare

Shant M. Vartanian, MD
Assistant Professor of Surgery
Division of Vascular and Endovascular Surgery

Introduction: Retrograde Access

- Wide spread application of endovascular techniques to infrageniculate arterial occlusive disease
- Technical failure rate of crossing complex tibio-peroneal lesions of ~10%
 - Strongly tied to occlusive anatomy
 - More likely w/ CTO vs stenosis
 - Sodor 2000 61% vs 84%
 - Dorros 2001 76% vs 98%
 - Faglia 2005 21% vs 87%
- Retrograde access as a means in increasing the likelihood of successful crossing

- First described by Iyer 1990
 - Two cases of failed antegrade crossing of PT
 - Open percutaneous access after surgical cutdown onto PT

- Proliferation of the technique and variations on a theme
 - SAFARI
 - TAMI

- Principles
 - Distal vascular access
 - Crossing the lesion retrograde
 - +/- transfer wire control to femoral access

- Wide spread adoption by vascular interventionalists
 - Fewer than 200 cases reported in the literature
 - Industry support
 - Parallels to radial access for interventional cardiology

- What does retrograde access add?
 - Arterial access close to the occlusive lesion
 - Pushability
 - Another attempt at salvaging a failed crossing
 - Re-establishing intraluminal position for failed subintimal re-entry
Pedal Access: Case Presentation

Technique: Prep
- Prep in anticipation of needing access
 - Circumferential foot and ankle prep
 - Sterile half-sheet on Angiotable
 - Drape with interventional angio drape
 - Antegrade approach
 - Cut window through angio drape if pedal access is desired
- On the fly prep
 - Cut window into angio drape and prep foot
 - Ioban to secure drapes to prepped foot and exclude unsterile OR table
 - Imaging artifact with ultrasound guided access

Technique: Access
- Imaging assisted access
 - Simple fluoroscopic guidance for heavily calcified vessels
 - Guidance by the very object you should try to avoid -> calcified atheroma
 - Lack of 3 dimensional data
 - Angiographic guidance
 - Angiography from above the lesion to roadmap access vessels
 - Ultrasound guided access
 - Identify “softer” parts of the artery that are more receptive to puncture
 - 3 dimensional imaging
 - Less likely to have puncture site complications
Technique: Access

- 7 - 15 MHz compact linear array probe
- 4 fr Micropuncture kit with echogenic needle
 - 21 g needle
 - 0.018" wire
- Checkflow valve
- To go small
 - 2.9 fr inner dilator only
- Sheathless access
 - 0.018” wire
 - +/- support catheter, low profile balloon OTW balloon catheter
 - Lose ability to shoot angiograms via the retrograde sheath

Technique: Crossing the Lesion

- No single best method for all lesions
- Transluminal vs subintimal
- Wire guides
 - 0.014" vs 0.018" vs 0.035”
 - Hydrophilic vs CTO
- Catheter support
 - Quickcross (Spectranetics)
 - Crossath (Cook)
 - Trailblazer (Covidien)
 - CXI (Cook)
 - 65 cm length, straight or angled tip
- CTO Catheter
 - Viance (Covidien)

Technique: Crossing the Lesion

- Treat from retrograde access or transfer wire access to the femoral sheath
- To treat retrograde
 - Upsize sheath vs sheathless access
 - Low profile balloons
 - Lose ability to manage puncture site complications
- To transfer wire access to the femoral sheath:
 - Mate to femoral catheter
 - Position a straight 0.035 catheter as distally as possible from the femoral access
 - Steer the retrograde wire into the catheter and deliver out the sheath
 - Easier if working in a constrained space
 - Snare from femoral sheath
 - Easier if working in a larger space
 - Establish through-and-through wire access
 - Increases pushability
 - Tracking balloon through heavily calcified long CTO
Technique: Subintimal Salvage

A. Schmidt, Parkhospital Leipzig, Germany

Technique: Hemostasis

- Manual compression over puncture site for 10 minutes
 - Ideal for pedal access (DP/PT)
 - Completion angiogram from femoral access
 - Often requires selective injection of NTG to relieve access site spasm
- Intra-luminal balloon control
 - Ideal for puncture sites proximal to the malleolus
 - Cross access site with femoral wire
 - Low pressure appropriately sized balloon
 - +/- application of BP cuff with balloon inflated
 - Completion angiogram with NTG to relieve spasm

Results: Technical Success

<table>
<thead>
<tr>
<th>Number</th>
<th>Technical success</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iyer (1990)</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>Botti (2003)</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>Gandini (2007)</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Tamashiro (2006)</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Awasthi (2006)</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>Spinosa (2006)</td>
<td>21</td>
<td>100%</td>
</tr>
<tr>
<td>Downer (2007)</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Fusaro (2007)</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Montero-Baker (2008)</td>
<td>51</td>
<td>86%</td>
</tr>
<tr>
<td>Rogers (2011)</td>
<td>13</td>
<td>85%</td>
</tr>
<tr>
<td>Mudolph (2013)</td>
<td>27</td>
<td>85%</td>
</tr>
<tr>
<td>Ruzsa (2013)</td>
<td>51</td>
<td>98%</td>
</tr>
<tr>
<td>Verkatalaalam (2014)</td>
<td>11</td>
<td>82%</td>
</tr>
<tr>
<td>Patena (2012)</td>
<td>28</td>
<td>85%</td>
</tr>
</tbody>
</table>

Conclude that the technique is feasible
Outstanding questions about patient selection and the fate of the puncture site

Results: Fate of the Puncture Site

- Complications of puncture site by location
 - Femoral artery ~5%
 - Dissection 1-2%
 - Retrograde popliteal ~10%
 - Complications more frequent in ESRD, calcified vessels
 - Radial Access
 - Ave reported rate of 5 – 12%
 - Predictors: Small artery diameter, larger sheath/cath, diabetes, smoking, PAD, gender

Should we assume that pedal access will be any different?
Should we assume that the consequences would be worse?
Results: Fate of the Puncture Site

- Of reports addressing the issue, clinical exam or ankle pressures are reported
- No mid or long term follow up data with imaging of the puncture site

 - 51 patients, 47 w/ CLI
 - 1 access site thrombosis that required emergent pedal bypass

- Ruzsa (2013)
 - 51 patients (35% rest pain, 65% tissue loss)
 - 1 tibial artery access site thrombosis salvaged w/ antegrade angioplasty
 - 2 month outcomes
 - 3 urgent bypass operations
 - 8 Major unplanned amputations

What does retrograde access add?
- Arterial access close to the occlusive lesion
- Pushability
- Another attempt at salvaging a failed crossing
- Re-establishing intraluminal position for failed subintimal re-entry

What are the potential risks?
- Loss of critical runoff into the foot
- Failed crossing may worsen clinical exam

Patient Selection

- Patients for whom retrograde pedal access is a good idea
 - Limb threatening ischemia
 - Infrageniculate disease
 - Committed to an endovascular intervention
 - Soft tissue concerns (venous ulcers, scleroderma, XRT)
 - No conduit
 - Prohibitive surgical/anesthetic risk
 - Failed antegrade crossing

- Patients for whom retrograde access is a bad idea
 - Claudication with one vessel runoff
 - Active foot infection
 - Isolated SFA disease
Conclusions

- Retrograde access is a feasible technique that increases the likelihood of technical success
- Reserved for salvaging failed antegrade crossing
- Complications are infrequent but can be dire
 - Likely under-reported
- Outstanding questions about fate of the puncture site