WE CAN (AND SHOULD) CHOOSE PATIENTS FOR ASYMPTOMATIC CAROTID STENOSIS TREATMENT BASED ON SURVIVAL PREDICTIONS

ASYMPTOMATIC CAROTID STENOSIS TREATMENT BASED ON SURVIVAL PREDICTION

DISCLOSURES

- INDIVIDUAL
 None
- INSTITUTIONAL
 Cook, Inc
- Not discussing off label anything

A patient with an asymptomatic 90% carotid stenosis should not undergo intervention unless his/her life expectancy is

1. 1 year or more
2. 2 years or more
3. 5 years or more
An 82-year old patient with a 90% left carotid stenosis is referred to you. He underwent CABG 6 years ago and is asymptomatic. He no longer smokes. He does not take a statin because he developed muscle pain. His Cr is 1.6 mg/dl. He is not diabetic. He plays golf twice a week and either walks a mile or swims for 30 minutes on days he does not play golf. He just returned from a golf vacation in Scotland.

1. CEA
2. CAS
3. BMT

DEcision Analysis

Stroke risk
- Symptom status
- Degree of stenosis
- Plaque morphology
- Stenosis progression

Treatment benefit
- Long-term survival

Treatment Recommendations

CEA should be considered for asymptomatic stenosis of 60-99% because it lowers risk of stroke by a small but statistically significant amount (LEVEL 1)

CEA is of benefit only if it can be performed with a complication rate of ≤3% (LEVEL 1)

CEA primarily benefits men and those with a life expectancy of ≥5 years (LEVEL 1)

CAS may be considered as an alternative to CEA if CEA would present special difficulties and CAS can be performed with a complication rate ≤3% (LEVEL 2b)

Controversies

Studies not optimally designed
- Degree of stenosis
- Definition of asymptomatic
- Definition of primary endpoints

Best medical therapy then ≠ best medical therapy now

Change in treatment options (CAS) affects the risk/benefit balance
TREATMENT RECOMMENDATIONS

CEA should be considered for asymptomatic stenosis of 60-99% because it lowers risk of stroke by a small but statistically significant amount (LEVEL 1).

CEA is of benefit only if it can be performed with a complication rate of ≤ 3% (LEVEL 1).

CEA primarily benefits men and those with a life expectancy of ≥ 5 years (LEVEL 1).

CAS may be considered as an alternative to CEA if CEA would present special difficulties and CAS can be performed with a complication rate ≤ 3% (LEVEL 2b).

SURVIVAL PREDICTION

Conrad et al, Ann Surg 2013

- Patients: 1791
- CEA: 2004
- 30 Day CVA: 1.1%
- 30 Day ipsi CVA: 0.8%
- 30 Day death: 0.7%
- 5-Year actual survival: 73%

Patients 1791

- Score
- 5-YR Survival (%)
 - 0 to 5: 92.5
 - 6 to 8: 83.6
 - 9 to 11: 63.7
 - 12 to 14: 46.5
 - ≥ 15: 33.8

SURVIVAL PREDICTION

Wallaert et al, JVS 2013

- Patients: 4114
- CEA: 4114
- 30 Day CVA
- 30 Day ipsi CVA
- 30 Day death
- 5-Year actual survival

Patients 4114

- Score
- 5-YR Survival (%)
 - 0 to 5: 92.5
 - 6 to 8: 83.6
 - 9 to 11: 63.7
 - 12 to 14: 46.5
 - ≥ 15: 33.8
Asymptomatic Carotid Stenosis—Survival Prediction

SURVIVAL PREDICTION
Wallaert et al, JVS 2013

- **Low Risk**: 94% Survival
- **Medium Risk**: 80% Survival
- **High Risk**: 8% Survival

Factors:
- Age
- CAD Rx
- COPD
- Diabetes
- Dialysis
- Severe CKD

Patients: 506

- **Age**: 1.79
- **CAD Rx**: 2.03
- **COPD**: 3.53
- **Diabetes**: 1.99
- **Dialysis**: 5.67
- **Severe CKD**: 2.46

3-Year actual survival: 86%
SURVIVAL PREDICTION
Alcocer et al., JVS 2013

<table>
<thead>
<tr>
<th>SCORE</th>
<th>3-YR MORTALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2</td>
<td>6.1%</td>
</tr>
<tr>
<td>> 2</td>
<td>31.6%</td>
</tr>
</tbody>
</table>

OUTCOMES HIGH-RISK ASX CEA

Wallaert et al, Stroke 2012

Table 1. Predicted 3- and 5-Year Mortality for Patients With Life-Limiting Conditions and the Associated Reference Used to Estimate Mortality

<table>
<thead>
<tr>
<th>Condition</th>
<th>Predicted 3-Year Mortality</th>
<th>Predicted 5-Year Mortality</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoma</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Atherosclerotic disease</td>
<td>62</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>Syphilitic CAV</td>
<td>62</td>
<td>49</td>
<td>62</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td>55</td>
<td>47</td>
<td>55</td>
</tr>
<tr>
<td>Age ≥ 70</td>
<td>41</td>
<td>62</td>
<td>41</td>
</tr>
<tr>
<td>ASA Class V</td>
<td>41</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>Severe COPD</td>
<td>42</td>
<td>54</td>
<td>42</td>
</tr>
</tbody>
</table>

OUTCOMES HIGH-RISK ASX CEA

Wallaert et al, Stroke, 2012

COMBINED STROKE/DEATH

Wallaert et al, Stroke, 2012
SURVIVAL PREDICTION

\[
\text{CLE} = \frac{P}{(1 - P) r_0 - r_1}
\]

CLE = critical life expectancy
P = probability of periprocedural stroke
r_0 = annual stroke rate without intervention
r_1 = annual stroke rate after intervention

- Yuo et al, Medical Decision Making, 2013

SURVIVAL PREDICTION

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>P</th>
<th>r_0</th>
<th>r_1</th>
<th>CLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAS (1995)</td>
<td>2.3</td>
<td>2.2</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>ACST (2004)</td>
<td>2.8</td>
<td>1.9</td>
<td>0.5</td>
<td>2.1</td>
</tr>
<tr>
<td>CREST (2010)</td>
<td>1.4</td>
<td>1.0</td>
<td>0.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Guidelines & BMT</td>
<td>3.0</td>
<td>1.0</td>
<td>0.5</td>
<td>6.4</td>
</tr>
</tbody>
</table>

SURVIVAL PREDICTION

<table>
<thead>
<tr>
<th>STUDY</th>
<th>SCORE</th>
<th>SURVIVAL</th>
<th>TREAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conrad et al</td>
<td>15</td>
<td>33.8</td>
<td>NO</td>
</tr>
<tr>
<td>Wallaert et al</td>
<td>medium</td>
<td>80.0</td>
<td>YES</td>
</tr>
<tr>
<td>Alcocer et al</td>
<td>3</td>
<td>68.4</td>
<td>MAYBE</td>
</tr>
</tbody>
</table>

CAN WE USE SURVIVAL PREDICTION TO GUIDE TREATMENT

YES
SHOULD WE USE SURVIVAL PREDICTION TO GUIDE TREATMENT

YES

We must beware of needless innovation, especially when guided by logic.

Winston Churchill
SURVIVAL PREDICTION

<table>
<thead>
<tr>
<th>STUDY</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duschek et al</td>
<td>age</td>
</tr>
<tr>
<td></td>
<td>NT pro-BNP</td>
</tr>
</tbody>
</table>