Infection Control in the OR: Perspectives from Anesthesia and ID

Robin Stackhouse, MD
Clinical Professor of Anesthesia
University of California, San Francisco

Lisa Winston, MD
Professor of Medicine
University of California, San Francisco
Hospital Epidemiologist, San Francisco General Hospital

Scope of Healthcare Associated Infections (HAI)

- On any given day, 1 in 25 hospital patients has at least one HAI

<table>
<thead>
<tr>
<th>Site of Infection</th>
<th>Estimated Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>157,500</td>
</tr>
<tr>
<td>GI illness</td>
<td>123,100</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>93,300</td>
</tr>
<tr>
<td>Bloodstream infection</td>
<td>71,900</td>
</tr>
<tr>
<td>Surgical site infection</td>
<td>157,700</td>
</tr>
<tr>
<td>Other types of infections</td>
<td>118,500</td>
</tr>
<tr>
<td>Total number</td>
<td>721,800</td>
</tr>
</tbody>
</table>

http://www.cdc.gov/HAI/surveillance/index.html

Scope of Healthcare Associated Infections (HAI)

- Annual cost of 5 major infections in U.S. estimated at $9.8 billion
 - Surgical site infections largest contributor to overall costs – 34% of total
 - Per case cost:
 - Central line associated bloodstream infection $45,814
 - Ventilator associated pneumonia $40,144
 - Surgical site infection $20,785
 - Clostridium difficile infection $11.285
 - Catheter-associated urinary tract infection $896

Zimlichman et al, JAMA Intern Med 2013

Disclosures

Robin Stackhouse: No disclosures
Lisa Winston: No disclosures
ASA Recommendations for Infection Control (3rd Edition)

Task Force on Infection Control

Robin A Stackhouse, M.D. (Chair)
Richard Beers, M.D.
Daniel Brown, M.D., PhD, FCCM
Morris Brown, M.D.
Elliott Greene, M.D.
Mary Ellen McCann, M.D.
Bonnie M Tompkins, M.D.

Prevention of Healthcare-Associated Infection in Patients

- Hand Hygiene
- Preventing Contamination of Medications
- Prevention of Surgical Site Infection
- Prevention of Intravascular Catheter-Related Infection
- Prevention of Ventilator-Associated Pneumonia in the ICU
- Prevention of Infection Associated with Neuraxial Procedures
- Prevention of Transmission of Multi-drug–Resistant Organisms
- Pediatric Considerations
- Disinfection of Equipment

http://www.asahq.org/For-Members/~/media/For%20Members/About%20ASA/ASA%20Committees/Recommendations%20for%20Infection%20Control%20for%20the%20Practice%20of%20Anesthesiology.ashx

ASA Recommendations for Infection Control (3rd Edition)

Prevention of Occupational Transmission of Infection to Anesthesiologists

- Needlestick/Sharps Safety
- Transmission-based Precautions
- Bloodborne Pathogens (hepatitis B virus, hepatitis C virus, human immunodeficiency virus)
- Tuberculosis (TB)
- Emerging Infectious Diseases/Pandemic Influenza
- PPE: Respirators for the Care of Patients With Virulent Respiratory Pathogens
Infection prevention in anesthesia practice: A tool to assess risk and compliance

Hand Hygiene & Gloves

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Date</th>
<th>F compliant</th>
<th>M compliant</th>
<th>NA not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash hands before wearing gloves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash hands after removing gloves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash hands before and after contact with patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash hands before and after touching equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash hands before and after patient contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use alcohol-based hand rub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use disposable gloves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hand contamination of anesthesia providers is an important risk factor for intraoperative bacterial transmission

- 164 patients (82 1st case, 2nd case pairs)
- All providers with access to hand sanitizer on anesthesia cart and in room
- 89% contamination of anesthesia environment
 - 12% from anesthesia team
- 11.5% bacterial transmission to IV stopcock
 - 47% from anesthesia team
- 1 case of horizontal transmission

Video observation to map hand contact and bacterial transmission in operating rooms

- HH compliance 2.9%
- Inverse correlation between HH compliance and magnitude of surface contamination
- Organisms cultured:
 - S aureus
 - Enterococcus
 - “Plethora” of gram negative organisms
 - Coag negative Staph
 - Micrococcus
 - Corynebacterium
- Average # HH opportunities: 149/hr

Loftus et al. AJIC 42(2014)698-701

Indications for Hand Hygiene (HH) (CDC)

- When hands are visibly soiled
- Before direct contact with patients
- Before donning sterile gloves
- Before inserting indwelling urinary catheters, peripheral vascular catheters, or other invasive devices
- After contact with patient’s intact skin
- If moving from a contaminated-body site to a clean-body site
- After contact with inanimate objects in the immediate vicinity of the patient
- After removing gloves
- Before eating and after using a restroom

Hand Hygiene Algorithm

From: ASA Recommendations for Infection Control, 3rd Ed.
Artificial nails in the OR

- Outbreaks of healthcare associated infections linked to artificial and long nails
- CDC and WHO recommend nail length less than 0.25 inch (6.35 mm)
- Polish considered acceptable
- No evidence based guidelines for shellac (gel) or nail art
 - Conservative approach: treat as artificial nails

Ellingson et al. Infect Control Hosp Epidemiol 2014

Artificial nails – linked to infection

- 7 cardiovascular surgery patients developed post-operative infections with Serratia marcescens; one died
- All exposed to one scrub nurse with artificial nails
- Available isolates same by molecular typing
- Cardiac surgery suspended
- Distribution of infections by day of surgery

Artificial nails – linked to infection

- Culture of exfoliant cream from scrub nurse’s home grew same S. marcescens
- No other hospital or home environmental cultures grew S. marcescens
- Nurse used cream only on weekends, usually Sundays
- Exfoliant cream was discarded; nurse removed nails
- No other infections identified after surgery resumed

Injection safety headlines

- 5,700 may be at risk for hepatitis C in Colorado due to medical tech
- A former technician may have exposed patients at Bexar Medical Center and a San Antonio surgery facility.

Pittsburgh Tribune-Review

- Syringes reused at Children’s clinic

San Pedro Clinic Patients Told To Check For Hepatitis, HIV

Las Vegas Review-Journal

- Lawyers: 100 fear infection
Viral Hepatitis Outbreaks (n=16) in Outpatient Settings due to Unsafe Injection Practices, 2001-2010 (CDC)

<table>
<thead>
<tr>
<th>State</th>
<th>Setting</th>
<th>Year</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY</td>
<td>Private MD office</td>
<td>2001</td>
<td>HCV</td>
</tr>
<tr>
<td>NY</td>
<td>Private MD office</td>
<td>2001</td>
<td>HBV</td>
</tr>
<tr>
<td>NE</td>
<td>Oncology clinic</td>
<td>2002</td>
<td>HCV</td>
</tr>
<tr>
<td>OK</td>
<td>Pain remediation clinic</td>
<td>2002</td>
<td>HBV+HCV</td>
</tr>
<tr>
<td>NY</td>
<td>Endoscopy clinic</td>
<td>2002</td>
<td>HCV</td>
</tr>
<tr>
<td>CA</td>
<td>Pain remediation clinic</td>
<td>2003</td>
<td>HCV</td>
</tr>
<tr>
<td>MD</td>
<td>Nuclear imaging</td>
<td>2004</td>
<td>HCV</td>
</tr>
<tr>
<td>FL</td>
<td>Alternative medicine clinic</td>
<td>2005</td>
<td>HBV</td>
</tr>
<tr>
<td>CA</td>
<td>Alternative medicine clinic</td>
<td>2005</td>
<td>HCV</td>
</tr>
<tr>
<td>NY</td>
<td>Endoscopy/surgery clinics</td>
<td>2006</td>
<td>HBV+HCV</td>
</tr>
<tr>
<td>NY</td>
<td>Pain remediation clinic</td>
<td>2007</td>
<td>HCV</td>
</tr>
<tr>
<td>NV</td>
<td>Endoscopy clinic</td>
<td>2008</td>
<td>HCV</td>
</tr>
<tr>
<td>NC</td>
<td>Cardiology clinic</td>
<td>2008</td>
<td>HCV</td>
</tr>
<tr>
<td>NJ</td>
<td>Oncology clinic</td>
<td>2009</td>
<td>HBV</td>
</tr>
<tr>
<td>FL</td>
<td>Alternative medicine clinic</td>
<td>2009</td>
<td>HCV</td>
</tr>
<tr>
<td>CA</td>
<td>Pain remediation clinic</td>
<td>2010</td>
<td>HCV+HBV</td>
</tr>
</tbody>
</table>

How much can we see?

- Asymptomatic infection
- Under-reporting of cases
- Under-recognition of healthcare as risk
- Difficulty identifying single healthcare exposure
- Barriers to investigation
- Resource constraints

Medication - Infusion/Injection Safety Scenario

- First case of the day (weekend)
- Anesthesiologist meets patient in pre-op
- Pt brought to OR with IV pump/fluid (connected to the pump, capped off) that was at bedside
- End of case, anesthesiologist connects the old IV fluid and takes patient to PACU
- PACU nurse notes that IV is labeled for a different patient.

Scenario

- Anesthesia personnel: anesthesia faculty, CRNA, CRNA student
- CRNA and CRNA student sign out their first patient in the PACU
- OR is readied for second case
- Next patient evaluated and premedicated with versed 2 mg and fentanyl 50 mcg
- CRNA student gives CRNA fentanyl syringe (4 ml left)
- Patient brought to OR for combined epidural and GA
- Attending anesthesiologist monitoring patient and supervising placement of epidural by CRNA and student
- Patient needs more sedation, CRNA gives fentanyl syringe to attending
- Epidural completed, CRNA notes that there are 2 syringes of fentanyl. One missing 2 ml, one missing 1 ml
Infection Control Assessment of Ambulatory Surgical Centers

- 67.6% had at least 1 lapse in infection control practices
- 17.6% had lapses in 3 or more of the 5 infection control categories
 - Lapses:
 - Single dose vial used for more than 1 patient (28%)
 - HH adherence (19%)
 - PPE use
 - Failure to adhere to recommenced practices for equipment reprocessing (28%)
 - Failed environmental cleaning (19%)
 - Lapses in handling of glucose monitoring equipment (30% contaminated, HBV viable 7 days in dried blood, HCV viable 16hrs) (46%)

Schaefer et al, JAMA 2010;303(22):2273-2279

Survey Finds ‘Discouraging’ Injection Habits Among Anesthesiologists

- 49% - same vial for > 1 patient
- 31% - use Propofol on > 1 patient
- ~25% don’t always use a new needle or syringe when drawing from a vial
- ~25% use an open vial w/o knowing who accessed it previously
- Reused syringes on different patients
 - 8% residents
 - 2% anesthesiologists

Issue: Using Propofol syringe for multiple pts and changing the microbore tubing between pts.

Contamination can occur:

- Handling
- Fluid splatter
- Retrograde flow
 - Specific gravity Blood > IV solutions so passive backflow against forward flowing fluid possible.
- Lack of visible blood
 - Blood contamination found in 3.3% of tubing injection sites
 - Only 33% visible to naked eye

Greene ES. ASA Newsletter. 2002;66(12):22-23

“Did you just double dip that chip?” Timmy asks incredulously. “That’s like putting your whole mouth right in the dip!”
Safe Injection Practices: What CMS Surveyors Are Looking For

Unless otherwise indicated, a “No” response to any question below will be cited as a deficient practice.

- Needles are used for only one patient
- Syringes are used for only one patient
- Medication vials are always entered with a new needle
- Medication vials are always entered with a new syringe
- Medications that are pre-drawn are labeled with the time of draw, initials of the person drawing, medication name, strength and expiration date or time
- Single dose (single-use) medication vials are used for only one patient
- Multi-dose medications, used for more than one patient, are not stored or accessed in the immediate areas where direct patient contact occurs

CDC guidelines

- Minimize contamination risk by scrubbing the access port with an appropriate antiseptic (chlorhexidine, povidone iodine, an iodophor, or 70% alcohol) and accessing the port only with sterile devices [189, 192, 194–196]. Category IA

O’Grady et al, 2011 Guidelines for the Prevention of Intravascular Catheter Related infections
Scrubbing the hub

- Disinfect catheter hubs, needleless connectors, and injection ports before accessing (moderate evidence)
 - Apply mechanical friction for at least 5 seconds
 - Use an alcohol chlorhexidine preparation, 70% alcohol, or povidone iodine
 - Benefit most convincing for catheter colonization

 Marschall et al. Infect Control Hosp Epidemiol 2014

Antiseptic hub cap or port protector?

- Several products commercially available
 - Contain either 70% isopropyl alcohol (examples below) or chlorhexidine + isopropyl alcohol
 - Few clinical studies
 - Isopropyl alcohol impregnated devices associated with decreased risk of catheter colonization and CLABSI
 - Consider use as a “special approach”

 CUROS
 Marschall et al. Infect Control Hosp Epidemiol 2014

Stopcocks

- Closed catheter access systems are associated with fewer CRBSIs than open systems and should be used preferentially
 - Stopcocks represent a potential portal of entry for microorganisms into vascular access catheters and IV fluids. Aseptic technique warranted.
 - For stopcocks not in use
 - Sterile cap or syringe

Central Line Insertion Practices (CLIP)

- 31 states required by state law to report data on healthcare-associated infections through CDC’s National Healthcare Safety Network (NHSN)
 - Can report CLIP data
 - Started with Keystone project in Michigan ICUs
 - Results reported 2006
 - “Checklist”
 - Median rate central line associated bloodstream infection (CLABSI) decreased from 2.7 to 0 per 1000 catheter days; mean rate decreased from 7.7 to 1.4 per 1000 catheter days

NHSN CLIP Bundle requires “yes” to all

- Hand hygiene performed
- Appropriate skin prep
 - Chlorhexidine gluconate (CHG) if at least 60 days old
- Skin prep dry before insertion
- All 5 maximal sterile barriers used
 - Sterile gloves
 - Sterile gown
 - Cap worn
 - Mask worn
 - Large sterile drape covers patient’s entire body

Does CLIP bundle work?

- Central line associated bloodstream infection (CLABSI) rates reported to NHSN continue to decline
 - Data for ICUs reported since 1970s
- Experimental and observational data consistent regarding effect from CLIP improvement
- Given decline in rates, estimated that between 104,000 and 198,000 CLABSI avoided in non-neonatal critical care areas from 1990 - 2010

 Wise et al, Infect Control Hosp Epidemiol 2013

Neuraxial Procedures

- What is the recommended PPE to be worn by anesthesia when performing Neuraxial procedures (e.g. spinal anesthesia)?

Bacterial Meningitis After Intrapartum Spinal Anesthesia --- New York and Ohio, 2008--2009

- 5 cases of bacteria meningitis
 - Post partum women (13-22 hr following SAB or CSE)
 - 4 w/ CSF - *Streptococcus salivarius*
 - 1 death
- Hospital A
 - 3 patients, one anesthesiologist who routinely wore a mask, others in room did not
 - Indistinguishable PFGE in 2 of the pts
- Hospital B
 - 2 patients, one anesthesiologist who did not routinely wear a mask
 - PCR positive for *Strep. Salivarius* (culture neg, had received abx prophylaxis)
- Droplet Transmission most likely

 MMWR January 29, 2010;59(03):65-69
Practice Advisory - Neuraxial

- Aseptic techniques during preparation of equipment and the placement of neuraxial needles and catheters
 - removal of jewelry (rings, watches, etc)
 - hand washing
 - Wear cap, mask (covering mouth and nose)
 - Consider changing before each new case
 - sterile gloves
 - individual packets of antiseptics
 - sterile draping
 - sterile occlusive dressing

Practice Advisory for the Prevention, Diagnosis, and Management of Infectious Complications Associated with Neuraxial Techniques Anesthesiology 2010;112:530-545

Multistate Outbreak Fungal Meningitis

- 751 cases and 64 deaths reported from 20 states beginning September 2012 into 2013
- Caused by contaminated methylprednisolone acetate from the New England Compounding Center
 - *Exserohilium rostratum*
- Visible black particulate matter was seen in some recalled vials
- Other products compounded by NECC found to be contaminated with other organisms

Possible actions for clinicians

- Careful assessment of risks and benefits of invasive procedure
 - Informed consent
- Inspection of sterile products
Ebola 2014 (CDC)

- Filoviridae family (filovirus), Genus Ebolavirus
- Transmission: direct contact
 - broken skin or mucous membranes
 - blood and body fluids (urine, feces, saliva, vomit, and semen)
- Signs and symptoms:
 - fever (greater than 38.6 °C or 101.5 °F)
 - severe headache, muscle pain, vomiting, diarrhea, stomach pain, or unexplained bleeding or bruising.
 - appear anywhere from 2 to 21 days after exposure, 8 to 10 days most common.

<table>
<thead>
<tr>
<th>Country</th>
<th>Suspect</th>
<th>Confirmed</th>
<th>Deaths</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea</td>
<td>8/31/14</td>
<td>771</td>
<td>579</td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>9/18/14</td>
<td>942</td>
<td>750</td>
<td>601</td>
</tr>
<tr>
<td>Liberia</td>
<td>8/31/14</td>
<td>1698</td>
<td>871</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>9/18/14</td>
<td>2710</td>
<td>812</td>
<td>1459</td>
</tr>
<tr>
<td>Nigeria</td>
<td>8/31/14</td>
<td>21</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>9/18/14</td>
<td>21</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Senegal</td>
<td>8/31/14</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9/18/14</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>8/31/14</td>
<td>1216</td>
<td>1107</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>9/18/14</td>
<td>1673</td>
<td>1513</td>
<td>562</td>
</tr>
<tr>
<td>Total</td>
<td>8/31/14</td>
<td>3707</td>
<td>2106</td>
<td>1848</td>
</tr>
<tr>
<td></td>
<td>9/18/14</td>
<td>5347</td>
<td>3095</td>
<td>2630</td>
</tr>
</tbody>
</table>

Personal Protective Equipment (PPE)
- All persons entering the patient room should wear at least:
 - Gloves
 - Gown (fluid resistant or impermeable)
 - Eye protection (goggles or face shield)
 - Facemask
- Additional PPE (copious blood, body fluids, vomit, or feces)
 - Double gloving
 - Disposable shoe covers
 - Leg coverings
 - Aerosol generating procedures: N95 respirator or higher
If double gloving, don first pair of gloves (long) before gown.

Sequence for removing personal protective equipment (PPE):

1. **GOWN**
 - Fully cover torso from neck to knees, arms to end of wrists, and wrap around the back.
 - Fasten in back of neck and waist.

2. **MASK OR RESPIRATOR**
 - Secure ties or elastic bands at middle of head and neck.
 - Fit flexible band to nose bridge.
 - Fit snug to face and below chin.
 - Fit cheek respirator.

3. **GOOGLES OR FACE SHIELD**
 - Place over nose and eyes and adjust to fit.

4. **GLOVES**
 - Extend to cover wrist of isolation gown.

Glove removal:

- Grasp outside edge near wrist.
- Peel away from hand, turning glove inside-out.
- Hold in opposite gloved hand.
- Slide ungloved finger under the wrist of the remaining glove.
- Peel off from inside, creating a bag for both gloves.
- Discard.
- Perform hand hygiene.

- Double gloves: use this method for each pair.
- If using other PPE, remove gloves first.

Robin Stackhouse: stackr@anesthesia.ucsf.edu

Lisa Winston: lisa.winston@ucsf.edu