Germ Cell Tumors of the Testis
Pathology, Immunohistochemistry, and the Often Confusing Appearance of Their Metastases

Charles Zaloudek, MD
Department of Pathology
UCSF

Male Genital Cancers in the US in 2015

<table>
<thead>
<tr>
<th>Site</th>
<th>Estimated Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>220,800</td>
</tr>
<tr>
<td>Bladder</td>
<td>56,320</td>
</tr>
<tr>
<td>Kidney</td>
<td>38,270</td>
</tr>
<tr>
<td>Testis</td>
<td>8430</td>
</tr>
</tbody>
</table>

Germ Cell Tumors of the Testis

<table>
<thead>
<tr>
<th>Intratubular Germ Cell Neoplasia, Unclassified (IGCNU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intratubular Germ Cell Neoplasia, Specific Types</td>
</tr>
<tr>
<td>Seminoma</td>
</tr>
<tr>
<td>Spermatocytic Seminoma</td>
</tr>
<tr>
<td>Embryonal Carcinoma</td>
</tr>
<tr>
<td>Yolk Sac Tumor</td>
</tr>
<tr>
<td>Choriocarcinoma</td>
</tr>
<tr>
<td>Other Trophoblastic Tumors</td>
</tr>
<tr>
<td>Teratoma</td>
</tr>
<tr>
<td>Mixed Germ Cell Tumor</td>
</tr>
</tbody>
</table>

Frequency of Types

- Seminoma is the most common pure type
- Mixed germ cell tumor is the most common nonseminomatous germ cell tumor

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed GCT</td>
<td>78</td>
</tr>
<tr>
<td>Embryonal CA</td>
<td>16</td>
</tr>
<tr>
<td>Teratoma</td>
<td>5</td>
</tr>
<tr>
<td>Yolk Sac Tumor</td>
<td>2</td>
</tr>
</tbody>
</table>

Calgary, Canada Mod Pathol 2013; 26: 579-586
Intratubular Germ Cell Neoplasia (Carcinoma in Situ)

- Precursor of most invasive germ cell tumors
- Most likely in high risk patients; found in <1% of the normal population
- Thought to be established in the fetus at the time the gonads develop
- Switched on at puberty
- Lacks 12p abnormalities found in invasive tumors
- 50% develop invasive germ cell tumor by 5 years, 70% by 7 years

I had a couple of previous papers returned from American journals, which for a long time did not appreciate the existence of a CIS pattern. However, even there, CIS is now officially recognized.

Advances in Anatomic Pathology 2015; 22(3): 202-212
The Background

IGCNU

IGCNU – OCT4
IGCNU – SALL4

IGCNU – CD117

IGCNU – Pagetoid Spread to the Rete Testis

Treatment of IGCNU

- Unilateral: Orchiectomy
- Bilateral: Low dose radiation
 - Prevents development of invasive germ cell tumor
 - Causes sterility
Staging Testicular Tumors

<table>
<thead>
<tr>
<th>pT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT1</td>
<td>Limited to testis and epididymis. No lymphovascular invasion. No tunica vaginalis invasion.</td>
</tr>
<tr>
<td>pT2</td>
<td>Limited to testis and epididymis. Lymphovascular invasion present. Tunica vaginalis invasion present.</td>
</tr>
<tr>
<td>pT3</td>
<td>Invasion of the spermatic cord.</td>
</tr>
<tr>
<td>pT4</td>
<td>Invasion of the scrotum.</td>
</tr>
</tbody>
</table>

Clinical Stage I

- **Stage IA**
 - pT1 N0 M0
- **Stage IB**
 - pT2 N0 M0
 - pT3 N0 M0
 - pT4 N0 M0
- **Stage IS**
 - Any pT N0 M0 Elevated markers

What Information is Needed to Decide on Treatment?

- pT category
- Types of tumor present
 - Embryonal CA, choriocarcinoma high risk
 - YST may reduce risk
- Lymphovascular invasion
- Rete testis invasion (tumor grows around the rete tubules)
- Hilar soft tissue invasion
- Involvement of epididymis

From CAP Testis Checklist
Seminoma

- The most common germ cell tumor; can be pure or part of a MGCT
- Average patient age = 40.5; does not occur in children
- Bilateral in 2% of patients
- The clinical presentation is with a testicular mass
- Serum hCG can be elevated (~10%), but AFP should not be elevated

Seminoma

Current Treatment

- **Stage I**
 - Most treated by surveillance; some may receive radiation
 - About 20% relapse rate, but nearly 100% survival
 - Risk factors include large tumor (> 4 cm) and rete testis involvement

- **Stage II**
 - Radiation (small masses < 3 cm) or chemotherapy
 - 98% survival; may need to resect large residual masses
Seminoma Immunohistochemistry

<table>
<thead>
<tr>
<th>Marker</th>
<th>Staining Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT4 ✓</td>
<td>Nuclear</td>
</tr>
<tr>
<td>SALL4</td>
<td>Nuclear</td>
</tr>
<tr>
<td>CD117</td>
<td>Membrane/cytoplasm</td>
</tr>
<tr>
<td>D2-40 (podoplanin) ✓</td>
<td>Membrane/cytoplasm</td>
</tr>
<tr>
<td>PLAP</td>
<td>Membrane/cytoplasm</td>
</tr>
<tr>
<td>hCG</td>
<td>STGC only</td>
</tr>
<tr>
<td>SOX2</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Seminoma

Diagnostic Problems

- Necrosis – Complete Regression
- Unusual growth patterns: alveolar, tubular, trabecular
- Unusual stromal changes or tumor cell drop out: fibrosis, excessive granulomas or lymphocytes
- Small foci of intertubular seminoma
- STGC
Seminoma

Differential Diagnosis

- Embryonal carcinoma
- Yolk sac tumor, especially the solid pattern
- Lymphoma
- Malignant Sertoli cell tumor
- Malignant Leydig cell tumor
Spermatocytic Seminoma

- Not related to IGCNU or other conventional germ cell tumors
- 3 types of cells: intermediate, large, small
- Intratubular spermatocytic seminoma; no IGCNU
- Arises from spermatogonia
- Amplification of DMRT1 gene on p9p24.2 may be involved; no i12p

Spermatocytic Seminoma

- Less than 1% of testicular tumors
- Unrelated to classic seminoma
- Older patients, average mid 50’s
- Present with painless testicular mass
- Most do not spread beyond the testis
- Some develop sarcomatous transformation, and these metastasize
Spermatocytic Seminoma
Immunohistochemistry

<table>
<thead>
<tr>
<th>Marker</th>
<th>Seminoma</th>
<th>Spermatocytic Seminoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT4</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SALL4</td>
<td>+</td>
<td>+, mod</td>
</tr>
<tr>
<td>CD117</td>
<td>+</td>
<td>+, mod/weak</td>
</tr>
<tr>
<td>PLAP</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D2-40</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Intratubular Spermatocytic Seminoma
Embryonal Carcinoma

- Anaplastic primitive cells growing in a variety of patterns: solid, glands, papillae
- Uncommon as a pure tumor, very common as a component of a MGCT
- Average age 32, most 25-35
- Most present with a testicular mass
- Only 40% confined to the testis at diagnosis; 40% LN, 20% distant mets
Immunohistochemistry of Embryonal Carcinoma

<table>
<thead>
<tr>
<th>Stain</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT4</td>
<td>Positive, nuclei</td>
</tr>
<tr>
<td>SALL4</td>
<td>Positive, nuclei</td>
</tr>
<tr>
<td>SOX2</td>
<td>Positive, nuclei</td>
</tr>
<tr>
<td>Keratin AE1/AE3</td>
<td>Positive, membranes</td>
</tr>
<tr>
<td>EMA</td>
<td>Negative</td>
</tr>
<tr>
<td>CD30</td>
<td>Positive, membranes</td>
</tr>
<tr>
<td>PLAP, D2-40</td>
<td>-/+ , weak, focal</td>
</tr>
<tr>
<td>hCG</td>
<td>Positive in STGC</td>
</tr>
</tbody>
</table>

Embryonal Carcinoma Differential Diagnosis

- Seminoma
- Yolk sac tumor
- Choriocarcinoma
- Lymphoma
- Metastatic carcinoma from some other site
Surveillance for Stage I Nonseminoma Testicular Cancer

- All patients with stage I put on this program
- 1,226 patients
- Relapse rate was 30.6% at 5 years; most within the first year
- Survival rate 99.1%
- High risk group: vascular invasion, embryonal carcinoma, rete testis invasion
- High risk had 50% recurrence rate; no risk factors only 12% recurrence rate

What Information is Needed to Decide on Treatment?

- pT category
- Types of tumor present
 - Embryonal CA, choriocarcinoma high risk
 - YST may reduce risk
- Lymphovascular invasion
- Rete testis invasion (tumor grows around the rete tubules)
- Hilar soft tissue invasion
- Involvement of epididymis

Embryonal Carcinoma
Diagnostic Problems in Metastases/Post Chemotherapy

1. Loss of antigenicity.

<table>
<thead>
<tr>
<th>Stain</th>
<th>> 50% Positive</th>
<th>2+ or 3+ Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD30</td>
<td>8/25</td>
<td>13/25</td>
</tr>
<tr>
<td>OCT4</td>
<td>19/25</td>
<td>19/25</td>
</tr>
<tr>
<td>CK AE1/AE3</td>
<td>13/25</td>
<td>19/25</td>
</tr>
</tbody>
</table>

2. Tumor necrosis.

Hum Pathol 2006;37:662-667
Yolk Sac Tumor

- Differentiates to form structures typical of the embryonic yolk sac, allantois and extraembryonic mesenchyme
- In adults accounts for 6% of pure tumors but is seen in 53% of MGCT
- Patients 15-40 years old
- Serum AFP typically elevated

Yolk Sac Tumor in Children

- Most common testicular tumor in children (teratoma is second)
- Median age 16-20 months, most < 2 years old. Rare after age 4
- Unlike JGCT, virtually never congenital
- Serum AFP elevated
- Very favorable prognosis, most put on surveillance; spreads to the lungs
Yolk Sac Tumor Histologic Patterns

<table>
<thead>
<tr>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reticular (microcystic) ✔</td>
</tr>
<tr>
<td>Macrocystic</td>
</tr>
<tr>
<td>Endodermal sinus (festoon) ✔</td>
</tr>
<tr>
<td>Papillary</td>
</tr>
<tr>
<td>Solid</td>
</tr>
<tr>
<td>Glandular-alveolar</td>
</tr>
<tr>
<td>Myxomatous</td>
</tr>
<tr>
<td>Sarcomatoid</td>
</tr>
<tr>
<td>Polyvesicular vitelline (PVV)</td>
</tr>
<tr>
<td>Hepatoid</td>
</tr>
<tr>
<td>Parietal</td>
</tr>
</tbody>
</table>

- **Microcystic YST**
- **Macrocystic YST**

- **Festoon**
- **Schiller-Duval Body**

- **Glandular pattern**
- **Mixed with EC**
Yolk Sac Tumor Immunohistochemistry

<table>
<thead>
<tr>
<th>Stain</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT4</td>
<td>Negative</td>
</tr>
<tr>
<td>SALL4</td>
<td>Positive, nuclei</td>
</tr>
<tr>
<td>HNF-1</td>
<td>Positive, nuclei</td>
</tr>
<tr>
<td>Alpha-fetoprotein (AFP)</td>
<td>Positive, patchy, cytoplasm</td>
</tr>
<tr>
<td>Glypican-3</td>
<td>Positive, cytoplasm</td>
</tr>
<tr>
<td>Keratin AE1-AE3</td>
<td>Positive, cytoplasm</td>
</tr>
<tr>
<td>EMA, CK7</td>
<td>Negative</td>
</tr>
<tr>
<td>CD117</td>
<td>Patchy staining in solid pattern</td>
</tr>
</tbody>
</table>

Somatic Malignancies in Germ Cell Tumors

- Can be found in association with primary and metastatic germ cell tumors
- In one study
 - 7 of 45 glandular tumors reclassified as glandular yolk sac tumors
 - 26/76 sarcomatoid tumors reclassified as sarcomatoid yolk sac tumors
Many Postchemotherapy Sarcomatous Tumors in Patients With Testicular Germ Cell Tumors Are Sarcomatoid Yolk Sac Tumors: A Study of 33 Cases

- Evaluated 33 sarcomatoid tumors that lacked features of a defined sarcoma type
- Graded tumors using French sarcoma system
- All occurred after chemotherapy
- Tumors with at least 2+ staining for glypican and keratin in at least 10% of tumor cells were considered to be sarcomatoid YST
- 22/33 were classified as sarcomatoid YST
- 15/22 positive for SALL4
- 8/14 DOT, 5/14 ANED, 1 DOC
- Behavior correlated with tumor grade

“Somatic-type” Malignancies Arising From Testicular Germ Cell Tumors: A Clinicopathologic Study of 124 Cases With Emphasis on Glandular Tumors Supporting Frequent Yolk Sac Tumor Origin

- 7/45 adenocarcinomas were reclassified as glandular yolk sac tumors
- Criteria were: positive staining for glypican and/or AFP and scant/absent EMA and CK7
- YST and adenocarcinoma expressed CDX-2
- SALL4, BerEp4 and MOC1 commonly present in both
Choriocarcinoma

- Less than 1% of testicular tumors.
- In the largest series
 - 1010 testicular tumors reviewed
 - 6 (0.6%) pure choriocarcinomas
 - 9 (0.9%) choriocarcinoma predominant
- Patients mainly 20-40
- Almost all have metastases at diagnosis and presentation often due to symptoms caused by metastases
- Serum hCG typically markedly elevated
Choriocarcinoma

Immunohistochemistry

<table>
<thead>
<tr>
<th>Stain</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCG</td>
<td>Positive, STGC cytoplasm</td>
</tr>
<tr>
<td>Keratin, including CK7</td>
<td>Positive, cytoplasm</td>
</tr>
<tr>
<td>P63</td>
<td>Positive in cytotrophoblasts</td>
</tr>
<tr>
<td>HPL</td>
<td>Positive in some STGC and intermediate trophoblasts</td>
</tr>
<tr>
<td>Inhibin</td>
<td>Positive in STGC and some mononuclear trophoblasts</td>
</tr>
<tr>
<td>Glypican-3</td>
<td>Positive in STGC</td>
</tr>
<tr>
<td>OCT4</td>
<td>Negative</td>
</tr>
<tr>
<td>SALL4</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Choriocarcinoma

Treatment and Prognosis

- Widespread hematogenous metastases; worse prognosis than other germ cell tumors
- In largest recent series, 14 patients with follow up
 - 11 DOT despite BEP therapy
 - 1 AWT
 - 2 with lung metastases NED
- Not clear how much choriocarcinoma must be present for poor prognosis
Teratoma

- Germ cell tumor that differentiates to form mature or embryonic somatic tissues
- Uncommon as a pure tumor, 3-4%, but common component of MGCT
- Occur in two age groups

Prepubertal Teratoma

- Median age 13 m, almost all < 4 years
- Almost all are pure teratomas
- Clinically benign
- Can be treated by orchiectomy alone
- Organoid morphology, immature tissue less common than in adults
- No atypia or MF, no IGCNU

Prepubertal Benign Teratoma, Age 4
Prepubertal Benign Teratoma, No IGCNU

Teratomas in Adults

- Same age range as other germ cell tumors
- Pure teratomas reported to exhibit malignant behavior with retroperitoneal metastasis
- Usually mixed with other germ cell elements
- 12p abnormalities and associated IGCNU in 90% of cases
- No demonstrated differences in behavior between immature and mature teratomas and they are all classified as teratoma

Testicular Teratoma in an Adult
Testicular Teratoma in an Adult: Glands

Testicular Teratoma in an Adult – Immature Neural Tissue

Next to a Teratoma

OCT4
Teratoma

Special Situations

- Dermoid cysts
- Benign mature teratomas
- Epidermoid cysts
- No IGCNU or 12p abnormalities in any of the above
- Local excision with sufficient surrounding tissue to evaluate

Teratoma with a Secondary Malignant Component

- Can be in the testis, in a metastatic site or both
- Proliferation of atypical embryonic elements such as primitive neuroectodermal tissues
- Rhabdomyosarcoma most common sarcomatous element
- Larger than one 40x LPF
- Same 12p abnormalities as in teratoma
- Poor prognostic finding in a metastasis but not necessarily if only in the primary site
Testicular Germ Cell Tumors With Sarcomatous Components
An Analysis of 33 Cases

Charles C. Gao, MD*; Wolk Pomerance, MD*; Alejandro Loza-Castanon, MD*;
Shi-Ming Tu, MD; Louis Pinero, MD; Francis Wandell, MD*; and Regina Lencioni, MD, MD*.

- 33 cases at MD Anderson 1985-2007
- 30 had a testicular GCT with teratoma
- Most were MGCT
- 3 had received neoadjuvant chemo
- Sarcoma in the primary in 19; 2 died of GCT, 11 NED
- Sarcoma in the metastasis in 14; 7 died of GCT, 7 NED
- Patients with a sarcoma confined to the testicular GCT may not have a higher risk than same stage GCT without sarcoma
- Patients with a sarcoma in the metastases have a higher risk of dying

Differentiated rhabdomyomatous tumors after chemotherapy for metastatic testicular germ-cell tumors: a clinicopathological study of seven cases mandating separation from rhabdomyosarcoma

Jessica A Clevenger¹, Richard S Foster² and Thomas M Ulbright*²

- 7 cases with differentiated skeletal muscle but no primitive cells or mitotic figures
- All had a history of a NSGCT, 5 with a teratoma component
- One testis had foci of embryonal rhabdomyosarcoma
- Mild to moderate atypia often with prominent nucleoli, but no mf, necrosis, primitive elements
- No patient with follow up developed progressive sarcoma
- Clinical behavior similar to teratoma, not RMS