Evidence-Based Stroke Management: 2014 Update

Disclosures

- Research Grants
 - NIH / NINDS / NCATS (current)
 - SanBio, Inc. (stem-cell therapy for stroke not discussed)
 - American Heart Association (past, unrelated)
- No financial interests in any of the commercial entities that market any of the pharmaceuticals or devices discussed

Objectives

- Briefly review established, high-impact interventions for secondary stroke prevention
- Updates on prevention of stroke based on recent clinical evidence
 - New oral anticoagulants for stroke prevention with atrial fibrillation
 - RE-LY, ROCKET-AF, ARISTOTLE
 - Extended cardiac monitoring for cryptogenic stroke
 - EMBRACE, CRYSTAL AF
 - RESPECT-ESUS, NAVIGATE ESUS
 - Antithrombotic therapy for secondary prevention
 - FASTER, CHANCE, POINT, SOCRATES

Objectives

- Briefly review established, high-impact interventions for secondary stroke prevention
- Updates on prevention of stroke based on recent clinical evidence
 - New oral anticoagulants for stroke prevention with atrial fibrillation
 - RE-LY, ROCKET-AF, ARISTOTLE
 - Extended cardiac monitoring for cryptogenic stroke
 - EMBRACE, CRYSTAL AF
 - RESPECT-ESUS, NAVIGATE ESUS
 - Antithrombotic therapy for secondary prevention
 - FASTER, CHANCE, POINT, SOCRATES
High-Impact Targets for Secondary Stroke Prevention

- Blood pressure, blood pressure, blood pressure
- Urgent carotid endarterectomy/stenting for symptomatic carotid stenosis
- Oral anticoagulation for atrial fibrillation
- Antiplatelet therapy
- Cholesterol-lowering therapy
- Smoking Cessation
- Alcohol

Blood Pressure: Awareness, Treatment, and Control

<table>
<thead>
<tr>
<th>Year</th>
<th>Awareness</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976-80</td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>1988-91</td>
<td>73</td>
<td>55</td>
</tr>
<tr>
<td>1999-2000</td>
<td>68</td>
<td>56</td>
</tr>
<tr>
<td>2005-06</td>
<td>70</td>
<td>59</td>
</tr>
</tbody>
</table>

Trends in Blood Pressure in US

[Graph showing trends in blood pressure awareness, treatment, and control over time.]

Impact of Blood Pressure on Mortality

<table>
<thead>
<tr>
<th>Reduction in SBP (mmHg)</th>
<th>% Reduction in Mortality Stroke</th>
<th>% Reduction in Mortality CHD</th>
<th>% Reduction in Mortality Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-6</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>-8</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>5</td>
<td>-16</td>
<td>-9</td>
<td>-7</td>
</tr>
</tbody>
</table>

BP: blood pressure; **CHD**: coronary heart disease; **SBP**: systolic blood pressure

Age-Adjusted Mortality from Stroke

Figure 1. Percent decline in age-adjusted mortality rates for stroke by gender and race: United States, 1979-2000.

Projected Stroke Deaths in US

Figure 1. Historical and projected total stroke deaths per year in the United States, 1979 to 2039. Projected values are the product of future age-race-sex-specific mortality rates and US Census Bureau projections.

Figure 1. Historical and projected total stroke deaths per year in the United States, 1979 to 2039. Projected values are the product of future age-race-sex-specific mortality rates and US Census Bureau projections.
Evidence-Based Interventions

Evidence-Based Interventions

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population</th>
<th>Outcome</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV tPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NINDS Part 1 (NEJM 1995)</td>
<td>291</td>
<td><3 hours of symptom onset</td>
<td>4 point improvement in NIHSS or resolution within 24h</td>
</tr>
<tr>
<td>NINDS Part 2 (NEJM 1995)</td>
<td>333</td>
<td><3 hours of symptom onset</td>
<td>Barthel, mRS, GOS, and NIHSS</td>
</tr>
<tr>
<td>ECASS-III (Lancet 2009)</td>
<td>821</td>
<td>3-4.5 hours of symptom onset</td>
<td>mRS <2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Early Aspirin</th>
<th>Population</th>
<th>Outcome</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IST (Lancet 1997)</td>
<td>19,435</td>
<td><48 h</td>
<td>Recurrent stroke <14d</td>
</tr>
<tr>
<td>CAST (Lancet 1997)</td>
<td>21,100</td>
<td><48 h</td>
<td>Mortality <4 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statin</th>
<th>Population</th>
<th>Outcome</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARCL (NEJM 2006)</td>
<td>4,731</td>
<td>Stroke or TIA <6m</td>
<td>Recurrent stroke <5y</td>
</tr>
</tbody>
</table>

Evidence-Based Interventions

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population</th>
<th>Outcome</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Aspirin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAST (Lancet 1997)</td>
<td>21,100</td>
<td><48 h</td>
<td>Mortality <4 weeks</td>
</tr>
<tr>
<td>Cochrane Review (Sanderson 2008)</td>
<td>43,041</td>
<td><48 h</td>
<td>Early death or dependency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statin</th>
<th>Population</th>
<th>Outcome</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARCL (NEJM 2006)</td>
<td>4,731</td>
<td>Stroke or TIA <6m</td>
<td>Recurrent stroke <5y</td>
</tr>
</tbody>
</table>

Objectives

- Briefly review established, high-impact interventions for secondary stroke prevention
- Updates on prevention of stroke based on recent clinical evidence
 - New oral anticoagulants for stroke prevention with atrial fibrillation
 - RE-LY, ROCKET-AF, ARISTOTLE
 - Extended cardiac monitoring for cryptogenic stroke
 - EMBRACE, CRYSTAL AF
 - RESPECT-ESUS, NAVIGATE ESUS
 - Antithrombotic therapy for secondary prevention
 - FASTER, CHANCE, POINT, SOCRATES
Atrial Fibrillation and Stroke

- 2-3 million w/ AF in US; 12 million by 2050
- Incidence increases with age, 8% of those > 80y
- Population Attributable Risk ~ 12%
 - But strokes more severe, higher recurrence risk
- 5x higher risk; annual risk ~5% overall
 - CHADS\(_2\): CHA\(_2\)DS\(_2\)-Vasc (> 20-fold range in risk)
- 40-80% relative risk reduction w/ warfarin
 - Anticoagulation for AF underutilized
 - 50-60% of otherwise eligible patients not on appropriate anticoagulation therapy

Pharmacological Properties of New Oral Anticoagulants

<table>
<thead>
<tr>
<th>Dabigatran</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Direct thrombin inhibitor</td>
<td>Factor Xa inhibitor</td>
</tr>
<tr>
<td>Onset of action</td>
<td>0.5-2 h</td>
<td>3.4 h</td>
</tr>
<tr>
<td>t 1/2</td>
<td>12-14 h</td>
<td>12 h</td>
</tr>
<tr>
<td>Renal Clearance</td>
<td>80%</td>
<td>25%</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>P-gp inhibitors</td>
<td>P-gp inhibitors; CYP3A4</td>
</tr>
<tr>
<td>Laboratory Monitoring Required?</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Not crushable</td>
<td>Take w/ food for bioavailability</td>
<td></td>
</tr>
</tbody>
</table>

Phase III Studies of New Oral Anticoagulants: Study Design

<table>
<thead>
<tr>
<th>Dabigatran</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>RE-LY</td>
<td>ROCKET-AF</td>
</tr>
<tr>
<td>Study Design</td>
<td>Dabigatran dose blinded; open-label warfarin</td>
<td>Double-blind, double-dummy warfarin</td>
</tr>
<tr>
<td>Intervention</td>
<td>110 mg bid 150 mg bid</td>
<td>20 mg daily 5 mg bid</td>
</tr>
<tr>
<td>Control</td>
<td>warfarin</td>
<td>warfarin</td>
</tr>
<tr>
<td>Age</td>
<td>71.5</td>
<td>73</td>
</tr>
<tr>
<td>CHADS(_2)</td>
<td>2.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Hx Stroke/TIA</td>
<td>20%</td>
<td>55%</td>
</tr>
<tr>
<td>TTR*</td>
<td>64%</td>
<td>55%</td>
</tr>
</tbody>
</table>

* TTR: Time in Therapeutic Range (INR 2-3)

Phase III Studies of New Oral Anticoagulants: Major Results

<table>
<thead>
<tr>
<th>Dabigatran</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>RE-LY</td>
<td>ROCKET-AF</td>
</tr>
<tr>
<td>Measure</td>
<td>RR (95% CI)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>Primary outcome</td>
<td>Non-inferior Superior (150 mg)</td>
<td>Non-inferior Superior</td>
</tr>
<tr>
<td>Stroke/systemic embolization</td>
<td>0.66 (0.53-0.82)</td>
<td>0.79 (0.66-0.96)</td>
</tr>
<tr>
<td>ICH</td>
<td>0.41 (0.28-0.60)</td>
<td>0.67 (0.47-0.93)</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>0.93 (0.81-1.07)</td>
<td>1.04 (0.90-1.20)</td>
</tr>
<tr>
<td>Mortality</td>
<td>0.88 (0.77-1.00)</td>
<td>0.92 (0.82-1.00)</td>
</tr>
</tbody>
</table>

GI Bleeding (1.6% vs 1.2%)
GI Bleeding (3.15% vs. 2.16%)
GI Bleeding (1.1% vs. 0.5%)
GI Bleeding (0.3% vs. 0.1%)%

Note: Studies with different designs/populations/interventions: caution again making indirect comparisons
*per-protocol analysis (noninferiority)
*intention to treat analysis (superiority)
Reversal Agents

- No validated antidote available
- Activated charcoal may be helpful within a few hours of ingestion
- Dabigatran dialyzable (2/3 not protein-bound) but time to get access may be longer than half-life of drug (except in renal failure)
- Prothrombin complex concentrate (PCC)?
 - 4-factor (II, VII, IX, and X)
 - 3-factor (II, IX, X)
- Monoclonal Ab?

Other Issues

- Data limited for other indications
 - Cerebral venous sinus thrombosis
 - Hypercoagulable states
 - Valvular AF / Mechanical Heart Valves
 - Cervical artery dissection
- Adherence (missing single dose → inadequate anticoagulation) / ? Thrombolysis
- No readily available laboratory test of effect
- Drug costs ($280/month vs $6/month)
 - But may be offset by savings in monitoring costs /less ICH, better stroke outcomes
- Phase IV surveillance ongoing

Summary of Pivotal Phase III Trials

- Similar (rivaroxaban) or superior efficacy (dabigatran, apixaban) for prevention of stroke/systemic embolization compared to warfarin
- All associated with lower ICH risk compared to warfarin
- Similar (dabigatran, rivaroxaban) or lower (apixaban) major bleeding risk
 - Higher GI bleeding (dabigatran, rivaroxaban)
- Mortality benefit for apixaban
- Edoxaban (ENGAGE AF-TIMI 48, NEJM 2014)
 - FDA application pending

Use of New Oral Anticoagulants

- Consider new oral anticoagulants in patients with normal renal function that are similar to study participants
 - Previously untreated or poorly patients
 - Even with good INR control (given lower ICH rates)
- Warfarin may be preferred for
 - Severe renal insufficiency
 - Valvular AF; mechanical valves
 - Cost concerns; Poor Adherence
 - Need for quick reversal
 - Higher risk of GI bleed (for dabigatran & rivaroxaban)?
Objectives

- Briefly review established, high-impact interventions for secondary stroke prevention
- Updates on prevention of stroke based on recent clinical evidence
 - New oral anticoagulants for stroke prevention with atrial fibrillation
 - RE-LY, ROCKET-AF, ARISTOTLE
 - Extended cardiac monitoring for cryptogenic stroke
 - EMBRACE, CRYSTAL AF
 - RESPECT-ESUS, NAVIGATE ESUS
 - Antithrombotic therapy for secondary prevention
 - FASTER, CHANCE, POINT, SOCRATES

Extended Cardiac Monitoring

- Paroxysmal AF may account for a substantial proportion of otherwise cryptogenic stroke
- Paroxysmal AF is usually asymptomatic
- Paroxysmal AF likely to be associated with similar risk of stroke as persistent AF
- Therapies to reduce stroke risk for AF are effective
- Improving detection of paroxysmal AF may identify additional candidates for anticoagulation

EMBRACE

30-Day Cardiac Event Monitor Belt for Recording Atrial Fibrillation After a Cerebral Ischemic Event

- Study Intervention
 - 30d cardiac monitor (event loop recorder) vs. Repeat Holter monitoring (24 h)
- Population
 - 572 patients with cryptogenic ischemic stroke/TIA including 24 h ECG monitoring; 17 Canadian centers
 - Age ≥ 55 (Mean 73); 63% stroke; 38% TIA
 - Median CHADS2 score 3
- Primary endpoint
 - One or more AF or Atrial Flutter episodes lasting for ≥ 30 seconds within 90 d

EMBRACE Results

<table>
<thead>
<tr>
<th>AF ≥ 30 seconds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>45/280 (16.1%)</td>
</tr>
<tr>
<td>Control</td>
<td>9/277 (3.2%)</td>
</tr>
<tr>
<td>Absolute Difference</td>
<td>12.9% (95% CI 8.0-17.6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AF ≥ 2.5 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Absolute Difference</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oral anticoagulant prescribed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Absolute Difference</td>
</tr>
</tbody>
</table>
CRYSTAL AF
CRYptogenic STroke And underLyng AF Trial

- Study Intervention
 - Insertable (Implanted) cardiac monitor vs. standard care

- Population
 - Cryptogenic TIA/stroke (age ≥ 40 y (mean 61.5y); no AF detected during 24h of ECG monitoring); within 90d; 447 enrolled (441 randomized) between 6/2009-4/2012

- Primary Outcome
 - Time to AF detection (>30 seconds) within 6 months

- Secondary Outcome
 - Time to AF detection (>30 seconds) within 12 months

Sanna T et al, NEJM 2014

CRYSTAL AF Results

- AF detection at 6 months
 - 8.9% in ICM group (19/221 patients)
 - 1.4% in control group (3/220 patients)
 - HR 6.4 (95% CI 1.9-21.7)
 - Median 41 days to detection (IQR 14-84)

- AF detection at 12 months
 - 12.4% in ICM group (29/221 patients)
 - 2.0% in control group (4/220 patients)
 - HR 7.3 (95% CI 2.6-20.8)
 - Median 32 days to detection (IQR 2-73)

Sanna T et al, NEJM 2014

Conclusions

- Optimal duration, modality, and appropriate patient selection for extended cardiac monitoring is not established
- Extended monitoring should be considered in patients with cryptogenic stroke
 - Detection of AF is increased by increasing the sampling period and the intensity of monitoring
 - Patients with cryptogenic stroke and subsequent detection of AF will likely benefit from anticoagulation
- ? for patients with a lower burden of AF (< 30 seconds?)
 - Is there a threshold burden of AF that confers risk of stroke and justifies anticoagulation?

Embolic Stroke of Undetermined Source (ESUS)

- Cryptogenic stroke ≈ 25% (300,000 cases in North America and Europe annually)
- ESUS Defined
 - Non-lacunar stroke by CT or MRI
 - Absence of proximal extracranial or intracranial atherosclerosis causing ≥ 50% stenosis
 - No major high-risk cardioembolic source; No other cause of stroke identified (e.g. vasculitis, dissection, drug use)
- WARSS (warfarin INR 1.4-2.8 vs. aspirin 325 mg)
 - Embolic subgroup, Recurrent stroke or death < 2y:
 - 12% warfarin vs. 18% aspirin
 - HR 0.66 (95% CI 0.4-1.2)
RE-SPECT ESUS
Randomized Evaluation in Secondary stroke PrEvention Comparing the
Thrombin inhibitor dabigatran etexilate versus acetylsalicylic acid (ASA)
in Embolic Stroke of Undetermined Source

- Study Intervention
 - Dabigatran (150 mg or 110 mg twice daily) vs.
 - Aspirin 100 mg daily

- Population
 - Age >=60 or 50-59 with one stroke RF; mRS ≤ 3
 - < 3 months after ESUS
 - ~6000 patients, 0.5-3 years of follow-up

- Primary Outcome
 - recurrent stroke or systemic embolism

- Secondary Outcomes
 - non-fatal stroke, non-fatal MI, vascular death, and all-cause death

NAVIGATE ESUS

- Study Intervention
 - Rivaroxaban 15 mg daily vs.
 - Aspirin 100 mg

- Population
 - ESUS age < 60; Event-driven sample size (555 primary outcomes); ~7000 patients; 350 sites

- Primary Outcome
 - Recurrent stroke and systemic embolization

- Secondary Outcomes
 - Cerebrovascular, cardiovascular events, mortality

Antiplatelet Cheat Sheet - Long-term

- Aspirin 50-100 mg vs. clopidogrel 75 mg vs. ER Dipyridamole/aspirin
 - Little evidence for dose-response / Generally use minimal effective dose long-term / Similar efficacy (perhaps slightly higher with clopidogrel and ER Dipyridamole/aspirin, NNT>200)
 - Clopidogrel vs. aspirin (CAPRIE)
 - ER Dipyridamole/aspirin vs. aspirin (ESPS-2, ESPRIT)
 - ER Dipyridamole/aspirin vs. clopidogrel) (PRoFESS)

- Aspirin + clopidogrel (MATCH)
 - Not recommended

Antiplatelet Cheat Sheet - Acute

- Acute Stroke Management
 - Acute aspirin 325 mg (160-300 mg) (IST, CAST)
 - Use higher dose acutely
 - Aspirin + clopidogrel (FASTER, CHANCE, POINT)
 - Consider short-term dual antiplatelet
 - SAMMPRIS
 - Asian patients x 21d
 - ER Dipyridamole/aspirin (EARLY)
 - Open-label trial; similar efficacy vs aspirin
 - Clopidogrel
 - Little current evidence to support use over aspirin acutely

9/6/2014
CHANCE

Clopidogrel in High-Risk Patients with Acute Non-Disabling Cerebrovascular Events

- **Study Intervention**
 - Clopidogrel 300 mg loading dose + 21 days clopidogrel 75 mg + open-label aspirin 75-300 mg vs.
 - Open-label aspirin 75-300 mg

- **Population**
 - 5170 patients; 114 centers in China; Minor stroke or high-risk TIA within 24h

- **Primary outcome**
 - Stroke (ischemic or hemorrhagic) within 90 days

CHANCE Results

- **Primary Outcome**
 - 8.2% in clopidogrel + aspirin group
 - 11.7% in aspirin group
 - HR 0.68 (95% CI 0.57-0.81)

- **Moderate or Severe Hemorrhage**
 - 0.3% in clopidogrel + aspirin group (7 patients)
 - 0.3% in aspirin group (8 patients)

POINT

Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke

- **Study Intervention**
 - Aspirin + clopidogrel 600 mg load + clopidogrel 75 mg x 90d
 - Aspirin 50-325 mg

- **Population**
 - High risk TIA (ABCD2 ≥ 4) or minor stroke (NIHSS ≤ 3) within 12 hours
 - Study ongoing (enrollment 2,285 / 5840 planned)
 - 350 international centers

- **Primary Outcome**
 - New ischemic events (ischemic stroke, MI, ischemic vascular death) within 90d

SOCRATES

Acute Stroke Or Transient IsChemic Attack TReated with Aspirin or Ticagrelor and Patient Outcomes

- **Study Intervention**
 - Ticagrelor 180 mg load + 90 mg bid vs.
 - Aspirin 300 mg load + 100mg daily

- **Patient Population**
 - >40y, minor stroke or high risk TIA within 24 hours, 10,560 planned enrollment; >500 sites

- **Primary Outcome**
 - Stroke, MI, or death < 90d

- **Secondary Outcomes**
 - Prevention of ischemic stroke within 90d
 - Net clinical outcome: stroke + MI + death + life threatening bleeding within 90d
Objectives

- Briefly review established, high-impact interventions for secondary stroke prevention
- Updates on prevention of stroke based on recent clinical evidence
 - New oral anticoagulants for stroke prevention with atrial fibrillation
 - RE-LY, ROCKET-AF, ARISTOTLE
 - Extended cardiac monitoring for cryptogenic stroke
 - EMBRACE, CRYSTAL AF
 - RESPECT-ESUS, NAVIGATE ESUS
 - Antithrombotic therapy for secondary prevention
 - FASTER, CHANCE, POINT, SOCRATES