Atherectomy: Where Do We Stand After 12 Years Since FDA Clearance

John R. Laird
Professor of Medicine
Medical Director of the Vascular Center
UC Davis Medical Center

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

- **Affiliation/Financial Relationship**

 - Consulting Fees/Honoraria
 - Boston Scientific, Medtronic, Abbott, Covidien, Bard Peripheral Vascular, Volcano

 - Research Support
 - Atrium Medical, WL Gore

 - Scientific Advisory board/stock options
 - AngioScore, Angioplast, NexGen, Reflow, Endoluminal Sciences, Syntervention, PQ Bypass, Shockwave Medical

Board Member VIVA Physicians

Where Do We Stand?

- Continued evolution and improvement of devices
- Niche applications (Calcium, thrombus containing lesions, instent restenosis, “non-stent zones”)
- Limited data
- Excellent reimbursement in US (outpatient labs) driving usage
- Possibility of Atherectomy plus DCB

Device Evolution
Atherectomy Devices

<table>
<thead>
<tr>
<th>Jetstream™ Atherectomy System (Boston Scientific)</th>
<th>Diamondback 360°, Stealth 360° Atherectomy System (Cardiovascular Systems, Inc)</th>
<th>SilverHawk™ TurboHawk™ Plaque Excision System (Covidien)</th>
<th>Turbo-Elite™ Laser Atherectomy Catheter (Spectranetics)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Front-Cutting: ✔
- Differential Cutting: ✔ ✔
- Active Aspiration: ✔
- Concentric Lumens: ✔
- Lesion Morphology:
 - Calcium: ✔ (large vessel only) ✔
 - Soft/Fibrotic Plaque: ✔
 - Thrombus: ✔ (indicated for thrombectomy and atherectomy)

Excimer Laser

Technical Improvements:

- Evolution of Catheter Designs
 - Extreme
 - Optimally Spaced
 - Point 9
 - Turbo
 - Turbo Elite
 - Turbo Tandem

2.3 mm and 2.5 mm peripheral catheters FDA approved 2004

Excimer Laser

Technical Improvements:

<table>
<thead>
<tr>
<th>1.7mm TURBO elite laser catheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
</tr>
<tr>
<td>Model Number</td>
</tr>
<tr>
<td>Number of fibers</td>
</tr>
<tr>
<td>Active Area</td>
</tr>
<tr>
<td>Max. Output Energy</td>
</tr>
<tr>
<td>Sheath Compliance</td>
</tr>
<tr>
<td>Max. Guide Wire Compatibility</td>
</tr>
<tr>
<td>Working Length</td>
</tr>
</tbody>
</table>

Turbo Tandem

![Turbo Tandem](image5)
Pretreatment Angio
100% Lt SFA

Angio Post 2 mm Pilot channel
60 Fl/40 Hz

IVUS Post 2 mm Pilot channel

Angio Post 8 Fr TURBO-Booster with 2 mm catheter at 60 Fl/40 Hz
4 passes/11,114 pulses

IVUS Post PTA

Angio Post PTA using 5 mm x 8 cm and 6 mm x 2 cm balloons @ 2 atm
Clinical Evidence

- Peripheral Excimer Laser Angioplasty Trial (PELA)
 - Randomized trial of laser vs. PTA for long SFA occlusions
- Laser Angioplasty for Critical Limb Ischemia Trial (LACI)
 - Multicenter registry of laser plus adjunctive therapies for CLI
- CELLO Trial
 - Multicenter registry of Turbo Booster/Tandem device
- Excimer Laser Randomized Controlled Study for Treatment of Femoropopliteal In-Stent Restenosis (EXCITE ISR)
 - Randomized trial of laser vs. PTA for fem-pop ISR

Potential Applications

- Debulking long occlusions
- Instent restenosis
- Thrombus containing lesions
Limb Salvage Rate = 93%

EXCITE ISR Trial - Primary Patency

Product-Limit Survival Estimates
With number of subjects at risk

Days from Index Procedure

p < 0.005

Key words: critical limb ischemia, laser angioplasty, excimer laser, limb salvage
Occluded Viabahn Stent Graft

STEALTH 360º PAD SYSTEM
Clinical Evidence

- OASIS Trial
 - Prospective multicenter registry
- CONFIRM I and CONFIRM II
 - Post market registries
- CALCIUM 360°
 - Post market registry

Clinical Application

- Heavily calcified and non-dilatable lesions

Dealing with Calcification

Orbital Atherectomy
Post Atherectomy

HawkOne™ Directional Atherectomy System

- Treat All Morphologies
 - Treat all atherosclerotic plaque effectively, including severe calcium

HawkOne™ Directional Atherectomy System

- 50% increase in rotational speed (8,000 – 12,000 RPM)
- More robust drive shaft
- Modified blade design with 4 contoured blades
- Better crossing profile
- Simplified cleaning

Clinical Evidence

- TALON Registry
 - Post market registry
- DEFINITIVE LE
 - Large, prospective multicenter registry (claudication and CLI subgroups)
- DEFINITIVE Calcium
 - Prospective multicenter registry of excisional atherectomy for calcified lesions
- DEFINITIVE AR
 - Small randomized trial of DCB vs. Atherectomy plus DCB
Potential Applications

- Ostial lesions
- Common femoral lesions
- Eccentric, bulky plaque
- Calcified lesions
- Instent restenosis

Common Femoral Artery

TurboHawk Calcium Cutter

Diffuse SFA Disease in Diabetic Patient
Jetstream Clinical Studies

Pathway PVD study
- 172 patients at 9 European centers
 - 51% had lesions with moderate to high calcium, 31% total occlusions
 - 74% TLR-free at 12 months

Jetstream Calcium Study
- Multicenter study of patients with moderately to severely calcified peripheral artery disease (N=21)
- Results show that the JetStream Atherectomy System removes and remodels superficial calcium in moderately and severely calcified lesions, resulting in significant luminal gain

JET Post-market Registry
- Ongoing registry to observe effects of Jetstream on various lesion types/morphologies

What's the quality of data supporting the use of atherectomy devices?

Poor!

- Many were approved by the FDA using 510K pathway based on predicate device and little data
- After all these years - Only 3 randomized trials
 - PELA Trial (Excimer Laser)
 - EXCITE ISR Trial (Excimer Laser)
 - DEFINITIVE AR (Directional atherecomy plus DCB vs. DCB)

Maehara et al. ISET 2013, Miami, FL
ClinicalTrials.gov NCT01436435
Combination Therapy: Atherectomy Plus DCB

Best of Both Worlds?

- Greater acute lumen gain of atherectomy without recoil/dissection of PTA
- DCB allows improved patency rates after atherectomy
- Reduced need for stents

DEFINITIVE AR: directional atherectomy + DCB vs DCB alone

- Third non-randomized arm for directional atherectomy + DCB for severely calcified lesions
- Results suggest that adjunctive atherectomy may improve procedural and clinical outcomes following DB treatment of the SFA and/or popliteal artery, particularly for longer or severely calcified lesions

Atherectomy and Drug-Coated Balloon Efficacy: Clinical Evidence

- DEFINITIVE AR: directional atherectomy + DCB vs DCB alone
 - Third non-randomized arm for directional atherectomy + DCB for severely calcified lesions
- Results suggest that adjunctive atherectomy may improve procedural and clinical outcomes following DB treatment of the SFA and/or popliteal artery, particularly for longer or severely calcified lesions

Procedural Results

<table>
<thead>
<tr>
<th>Lesion >10 cm</th>
<th>All Severe Ca2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Success</td>
<td>DCB</td>
</tr>
<tr>
<td>Bail-out Stent</td>
<td>64.2%</td>
</tr>
<tr>
<td>Flow-limiting Dissection</td>
<td>3.7%</td>
</tr>
</tbody>
</table>

12-Month Results

- Lesions >10 cm
- All Severe Ca2+

Zeller, VIVA 2014.

DCB, drug-coated balloon; DUS, duplex ultrasound; SFA, superficial femoral artery.
Where Do We Stand?

- Better atherectomy devices available
- Device specific advantages for certain lesion subsets
- More options for heavily calcified lesions

But...

- These are expensive devices
- Limited good quality data
- Usage driven by favorable reimbursement

Go Giants!!