New Drugs for Osteoporosis and Bone Disorders

Edward Hsiao, MD, PhD
University of California, San Francisco
Division of Endocrinology and Metabolism
Metabolic Bone Clinic
Institute for Human Genetics
2015 UCSF Advances in Internal Medicine

Objectives

- Brief review of mechanism
- Osteoporosis drugs
 - New Anabolics
 - Sclerostin antibodies
 - PTH analogs
 - New Antiresorptive
 - Cathepsin K inhibitor
 - Discontinued strategies
- Rare bone diseases
 - Hypophosphatasia

Effective treatments require understanding bone remodeling

Treatment goals:
1. Bone formation
2. Bone turnover

Disclosures

- Edward Hsiao receives research grant support from Clementia Pharmaceuticals for unrelated clinical trials. He has no conflicts of interest.
- This presentation includes discussion of off-label, investigational use of a commercial product, or drugs that are not FDA approved.
- Care should be guided by expert opinion and literature. As always, we encourage the application of sound clinical judgment on a case-by-case basis.
Current Treatments for Osteoporosis

<table>
<thead>
<tr>
<th>Increase Bone Formation</th>
<th>Decrease Bone Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Parathyroid hormone (PTH, Teriparatide)</td>
<td>- Hormone Therapy (HT)</td>
</tr>
<tr>
<td></td>
<td>- SERM/Raloxifene (Evista)</td>
</tr>
<tr>
<td></td>
<td>- Calcitonin (Miacalcin)</td>
</tr>
<tr>
<td></td>
<td>- Bisphosphonates</td>
</tr>
<tr>
<td></td>
<td>- Alendronate (Fosamax)</td>
</tr>
<tr>
<td></td>
<td>- Risedronate (Actonel)</td>
</tr>
<tr>
<td></td>
<td>- Ibandronate (Boniva)</td>
</tr>
<tr>
<td></td>
<td>- Zoledronate (Reclast/Aclasta)</td>
</tr>
<tr>
<td></td>
<td>- (Strontium ranelate)</td>
</tr>
<tr>
<td></td>
<td>- RANKL inhibitors</td>
</tr>
<tr>
<td></td>
<td>- Denosumab (Prolia)</td>
</tr>
</tbody>
</table>

Recent Changes in Drugs for Osteoporosis

<table>
<thead>
<tr>
<th>Anabolics</th>
<th>Antiresorptives</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Anti-sclerostin antibodies</td>
<td>- Cathepsin K inhibitor</td>
</tr>
<tr>
<td></td>
<td>- Romosozumab</td>
</tr>
<tr>
<td></td>
<td>- Blonosozumab</td>
</tr>
<tr>
<td></td>
<td>- PTHrP analog</td>
</tr>
<tr>
<td></td>
<td>- Abaloparatide</td>
</tr>
<tr>
<td>- New considerations for denosumab</td>
<td></td>
</tr>
<tr>
<td>- Restrictions on strontium ranelate (in EU market)</td>
<td></td>
</tr>
<tr>
<td>- Vibration Therapy</td>
<td></td>
</tr>
</tbody>
</table>

Sclerostin is a Key Mediator of Bone Formation

[Schematic diagram showing the role of sclerostin in bone formation pathways](image)

Anti-Sclerostin Antibody #1: Romosozumab

- Romosozumab (Amgen/UCB: AMG785, CDP7851)
 - Humanized monoclonal antibody

- Phase 1 study:
 - Single dose of AMG785, 72 men and women;
 - Peak serum concentration achieved after 1 week (72 mg/kg)
 - Half life of 11-18 days
 - Dose ranging was done from 0.1-10 mg/kg
 - 10 mg/kg (maximum dose tested)
 - 120-184% increase in P1NP, BSAP, Osteocalcin
 - 54% decrease in CTX
 - Largest BMD effect at day 85
 - +5.3% lumbar spine BMD
 - +2.8% in total hip BMD

Romosozumab: Phase I

- Additional Phase I study
 - Multiple doses
 - 32 postmenopausal women with low bone mass
 - 6 doses, 1-2 mg/kg every 2 weeks, or
 - 3 doses of 2-34 mg/kg every 4 weeks, or placebo
 - 16 healthy men with low bone mass.
 - 1 mg/kg every 2 weeks, or
 - 3 mg/kg every 4 weeks, or placebo

Romosozumab: Phase II

- 419 postmenopausal women
 - T score between -2.0 and -3.5 in spine, total hip or femoral neck.
 - Monthly sq (70, 140, or 210 mg) or every 3 months (140 or 210 mg), for 12 months
 - Open label comparison to
 - Alendronate 70 mg weekly
 - Teriparatide 20 ug/day
Romosozumab Gives Higher Increase in BMD

- Every 3 months – same as 70 mg/mo dose
 - Approx. 5% increase in BMD at spine
 - Bone formation markers return to normal after 6-12 mo

Romosozumab: Phase III

- Recent announcements indicate that it meets goals, but full publications pending
 - STRUCTURE trial (Sept 2015 press release)
 - 436 postmenopausal women previously treated with bisphosphonates
 - Romosozumab vs teriparatide
 - Met goals for total hip BMD
 - FRAME trial (Feb. 2016 press release)
 - 7180 patients, 210 mg sq/month
 - Reduced incidence of new vertebral fractures at 12 and 24 mo
 - Reduced incidence of clinical fractures at 12 mo
 - Unclear benefit for non-clinical fractures at 12 and 24 mo.

Romosozumab Side Effects (Reported in Phase I-III)

- Injection site reactions
- No clear increase in serious adverse events over alendronate, teriparatide
- 20% develop binding antibodies, with 3% showing in vitro blocking ability, but subjects still showed biologic response
- Awaiting results of Phase III for full profile

Anti-sclerostin Antibody #2: Blosozumab

- Humanized monoclonal antibody
 - Eli Lilly (LY2541546)
- Phase I trials
 - Single and multiple dose regimens tolerated up to 750 mg every 2 weeks for 8 wks
 - 3.4-7.7% increase in lumbar BMD at Day 85

McClim, et al. JBMR 2014
Blosozumab: Phase II

- 120 postmenopausal women, T score between -2.0 and -3.5

Lumbar Spine

Total Hip

Recker, et al. JBMR 2015

Blosozumab: Phase II Durability of treatment

- Followup study for 1 year post treatment
 - 88 of 120 women previously studied
 - Suggests antiresorptive will be needed

Recknor, et al. JBMR 2015

Recent Changes in Drugs for Osteoporosis

- **Anabolics**
 - Anti-sclerostin antibodies
 - Romosozumab
 - Bisfosozumab
 - PTHrP analog
 - Abaloparatide

- **Antiresorptives**
 - Cathepsin K inhibitor
 - Ondanacatib
 - New considerations for denosumab
 - Restrictions on strontium ranelate (in EU market)
 - Vibration Therapy

Osteoblast Activation by PTHrP:

- **Parathyroid Hormone Related Protein**

- PTHrP
- PTH

- Gs GPCR bone anabolic response

Treatment goals: Bone formation Bone turnover
Abaloparatide: A PTHrP analog

- Synthetic peptide analog of human PTHrP
- Phase II:
 - 24 weeks of daily sq injections
 - Postmenopausal women
 - 20, 40, or 80 ug vs 20 ug of teriparatide
 - Lumbar spine BMD increased 2.8-6.7%, vs 5.5% in teriparatide and 0.8% in placebo
 - Femoral neck increased 1.4-2.6%, vs 0.5% in teriparatide and 0.4% in placebo

Leiden, et al. JCEM 2015

Abaloparatide: Phase III

- ACTIVE fracture prevention trial
 - 2463 postmenopausal women
 - 18 mo daily 80 ug abaloparatide vs placebo vs 20 ug teriparatide.
 - 89% decrease in new fracture rate vs. placebo
 - Teriparatide showed an 80% decrease
 - No significant differences in wrist fractures
 - Increased BMD in spine and hip at 6, 12, and 18 months
 - Major complications: hypercalcemia, and injection site reactions.

- Extension trial in progress

Recent Changes in Drugs for Osteoporosis

- **Anabolics**
 - Anti-sclerostin antibodies
 - Romosozumab
 - Bisphosphonate
 - PTHrP analog
 - Abaloparatide

- **Antiresorptives**
 - Cathepsin K inhibitor
 - Odanacatib
 - New considerations for denosumab
 - Restrictions on strontium ranelate (in EU market)
 - Vibration Therapy

Cathepsin K: Functions in Osteoclast Resorption Pits

- Resorbs bone
- Cathepsin K
 - secreted by osteoclasts
 - cleaves helical collagen
 - induces bone resorption

- Treatment goals: Bone formation, Bone turnover
Ondanacatib: Anti-Cathepsin K

- Related to two other Cathepsin K inhibitors
 - Relacatib: nonselective inhibitor of K, L, V, and S
 - No clinical information
 - Kumar, et al. Bone 2007 (monkey model)
 - Balicatib: showed BMD increases, but had cutaneous adverse events.
 - Adami, et al. JBMR 2006
- Ondanacatib: selective for Cathepsin K and orally bioavailable.
 - Bone, et al. JBMR 2009

Recent Changes in Drugs for Osteoporosis

- Anabolics
 - Anti-sclerostin antibodies
 - Romosozumab
 - Bialossestrumab
 - PTHrP analog
 - Abaloparatide

- Antiresorptives
 - Cathepsin K inhibitor
 - Ondanacatib
 - New considerations for denosumab
 - Restrictions on strontium ranelate (in EU market)
 - Vibration Therapy

Denosumab

- Human monoclonal antibody that inhibits RANKL (required for osteoclast function and survival)
- Given 60 mg sq every 6 months over 3 years reduces fracture risk (FREEDOM) and Freedom extension

<table>
<thead>
<tr>
<th></th>
<th>Vertebral</th>
<th>Non-vertebral</th>
<th>Hip</th>
<th>N (Ref #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate (10 mg/yr)</td>
<td>0.56 (0.43-0.69)</td>
<td>0.84 (0.74-0.94)</td>
<td>0.60 (0.40-0.92)</td>
<td>12,068 (2)</td>
</tr>
<tr>
<td>Zoledronate (5 mg/yr)</td>
<td>0.30 (0.24-0.38)</td>
<td>0.75 (0.64-0.87)</td>
<td>0.59 (0.42-0.83)</td>
<td>7,765 (1)</td>
</tr>
<tr>
<td>Denosumab (60 mg sq q6m)</td>
<td>0.95* (0.86-0.97)</td>
<td>0.95 (0.85-1.0)</td>
<td>0.95 (0.85-0.97)</td>
<td>7966 (3)</td>
</tr>
</tbody>
</table>

* Hazard ratios (secondary endpoints of study)

3. Cummings, et al. NEJM 2009 (FREEDOM)
Long-term Denosumab Use

- FREEDOM extension (total of 5 years) just reported, with persistent gains in BMD and fracture risk (1).
- Transition from alendronate to 1 year of denosumab appears safe and may have a slightly improved BMD (no fracture data) (2).
- Likely cost effective, particularly for patients with low compliance to bisphosphonates (3,4).
- Main complications:
 - Skin infection, urinary tract infection, dermatitis/eczema rash.
 - ONJ reported in cancer patients receiving high doses (120 mg every 4 weeks) of denosumab (5,6) and was seen in 2 patients in the FREEDOM extension (1).
 - Likely occurs at same rate as bisphosphonates, during clinical trials.

References:
1. Papaioannou, et al. JBMR 2011
2. Textor, et al. JBMR 2013
5. Smith, et al., Lancet 2012 (Prostate cancer)

Antiresorptives May Have Direct Anti-Tumor Effects

- Denosumab
 - Increased disease free survival in breast cancer (no overall survival data; vs. placebo) (1).
 - Prolongs survival in lung cancer vs. zoledronate (2).
 - Delay metastasis in prostate cancer (3) probably better than zoledronate (4).
- Zoledronic Acid
 - Does not work as an adjuvant for early breast cancer, but does reduce bone metastases (5).

References:
3. Smith et al., Lancet 2012

Meet Thy Neighbor...

Recent Changes in Drugs for Osteoporosis

- Anabolics
 - Anti-sclerostin antibodies
 - Romosozumab
 - Blinostat
 - PTHrP analog
 - Abaloparatide
- Antiresorptives
 - Cathepsin K inhibitor
 - Orlanacatib
 - New considerations for denosumab
 - Restrictions on strontium ranelate (in EU market)
 - Vibration Therapy
Strontium Ranelate Restrictions in EU Market

- Was never FDA approved in the US
 - Previously approved by the EMA in Europe

- Often confused with other forms, such as strontium citrate (available in health food stores)
 - Other forms not studied for bone, so unknown efficacy or toxicity

Strontium Ranelate Current Recommendations

- Reportedly increased incidence of cardiovascular events in multiple randomized control trials

- Unclear if this is also seen in real life, as trials may have had higher proportion of subjects with cardiovascular disease

- Recommendation to restrict to severe osteoporosis patients only, and only in patients with low baseline cardiovascular risk (though specifics are still vague)

Vibration Therapy for Osteoporosis?

- Originally developed for space flight
 - Vibrations for 25-30 Hz at 0.3 x g can prevent bone loss
 - Vibration studies in sheep forelimbs (20 min/day 5 days/week) can increase bone formation in limbs
 - Seemed potentially useful for osteoporosis

Vibration Therapy is Falling out of Favor

- Human trials have been quite variable, with some suggesting gain but others not

- Best trial is of 202 postmenopausal women
 - 30 vib/min, 20 min per day, 0.3 x g (low energy)
 - 90 vib/min, 20 min per day, 0.3 x g

- After 1 year – no difference in BMD

- Main adverse events: dizziness, fainting due to passive standing x 20 min.
Vibration Therapy is not FDA Approved

- Often sold on the internet, and many devices have higher energies (> 1 x g)
- Currently, no FDA oversight for devices
- Being investigated for other situations, such as spinal cord injury
- Vibration exposure is regulated in the workplace as a hazard

Objectives

- Brief review of mechanism
- Osteoporosis drugs
 - New Anabolics
 - Sclerostin antibodies
 - PTHrP analog
 - New Antiresorptive
 - Cathepsin K inhibitor
 - Discontinued strategies
- Rare bone diseases
 - Hypophosphatasia

Hypophosphatasia: treatment by enzyme replacement

- Deficiency of tissue non-specific alkaline phosphatase (ALPL/TNSALP)
 - Partial or complete loss of function
 - Hypomineralization, respiratory compromise
 - Mild forms may show progressive osteomalacia; poor dentition
 - Multiple mutations have been identified
 - Increase pyridoxal 5’ phosphate (PLP), phosphoethanolamine (PEP), and PPI

Major Forms of Hypophosphatasia

- Perinatal – usually autosomal recessive
 - Respiratory distress, renal failure, soft bones
- Adult form – usually partial mutations, heterozygous
 - Skeletal manifestations, early dental loss
 - Low age adjusted alkaline phosphatase
- Traditional treatments:
 - Optimization of calcium and vitamin D
 - Treatment for craniosynostosis
 - Experimental treatments with teriparatide to favor mineralization
Asfotase alfa – a new drug for Hypophosphatasia

- Recombinant TNSAP (ENB-0040) with a peptide tag to target specifically to bone
 - Improved respiratory outcome for infantile form (76% vs 5% from historical controls)
 - Improved skeletal findings; increased PTH levels, requiring calcium supplements

Asfotase Alfa Approval

- FDA approved for perinatal, infantile, and juvenile onset hypophosphatasia
- Also approved in the EU
- Injections 3-6 times/week
- Currently being studied for adult HPP

Conclusions

- Several new medications for osteoporosis and other bone diseases coming to market soon
- New anabolic drugs
 - Anti-Sclerostin Antibodies: Romosozumab and Blosozumab
 - PTHP Analog: abaloparatide
- New anti-resorptive
 - Cathepsin K blocker: Odanacatib
- Novel breakthrough medication for HPP: Asfotase Alfa
- Continued research on indications and complications

“I hear and I forget.
I see and I remember.
I do and I understand.”

- Confucius
Additional Resources

- Vibration therapy: