Osteoporosis Diagnosis: BMD, FRAX and Assessment of Secondary Osteoporosis

Steven T Harris MD FACP
Clinical Professor of Medicine
University of California, San Francisco

steve.harris@ucsf.edu

Disclosure and Conflicts of Interest
Steven T Harris MD 2014-2015

• Advisory Board/Consulting:
 – Alexion Pharmaceuticals, Amgen, Eli Lilly & Co, Gilead Sciences, Merck, Primus Pharmaceuticals, Radius Health

• Speaking/Teaching:
 – Eli Lilly & Co, Gilead Sciences
Pathogenesis of Osteoporosis

- Aging
- Menopause
- Other Risk Factors

Resorption > Formation

Bone Loss

- Poor Bone Quality
- Low Bone Density
- Low Peak Bone Mass
- Fractures

Falls

BMD: A Continuum of Risk

WHO Bone Density Criteria

BMD Measured by Central DXA at the Spine or Hip

<table>
<thead>
<tr>
<th>Diagnostic criteria*</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-score is above or equal to -1</td>
<td>Normal</td>
</tr>
<tr>
<td>T-score is between -1 and -2.5</td>
<td>Osteopenia (low bone mass)</td>
</tr>
<tr>
<td>T-score is -2.5 or lower</td>
<td>Osteoporosis</td>
</tr>
<tr>
<td>T-score is -2.5 or lower + fragility fracture</td>
<td>Severe, established osteoporosis</td>
</tr>
</tbody>
</table>

* Measured in "T-scores;" the T-score indicates the number of standard deviations above or below the average peak bone mass in young adults

Treatment Threshold Concept

10-Year Fracture Probability (%)

Current treatment threshold based on T-score

Treatment threshold concept based on WHO Absolute Fracture Risk

Adapted from JA Kanis et al, Osteoporos Int. 2001;12:989-995
Risk Factors for Fracture: Beyond Age + T-score

Risk Factor	RR (95% CI)
Prior Fracture | 1.62 (1.30-2.01) |
Parental History of Hip Fracture | 2.28 (1.48-3.51) |
Current Smoking | 1.60 (1.27-2.02) |
Systemic Corticosteroids | 2.25 (1.60-3.15) |
Alcohol Intake ≥ 3 Units Daily | 1.70 (1.20-2.42) |
Rheumatoid Arthritis | 1.74 (0.94-3.20) |

Patients With Prior Fracture Have a High Risk of Future Fragility Fractures

Prior fracture	Relative risk of future fracture		
Wrist	Vertebra	Hip	
Wrist	3.3	1.7	1.9
Vertebra	1.4	4.4	2.3
Hip	NA	2.5	2.3

Calculating Absolute Fracture Risk: FRAX
http://www.shef.ac.uk/FRAX/tool.jsp

52-Year-Old Woman With T-score -2.0:
Effect Of Additional Risk Factors

<table>
<thead>
<tr>
<th>Age & BMD</th>
<th>Age & BMD Smoking</th>
<th>Age & BMD Smoking Parental Hip Fx</th>
<th>Age & BMD Smoking ParentalHip Fx Wrist Fx</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>6.1</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>0.8</td>
<td>1.4</td>
<td>1.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>
FRAX® Model: Benefits

- Validated in large cohort of ~60,000 patients
- Quantitative estimation of fracture risk – more comprehensible to patients
- Applicability to men and women worldwide
- Can be used with economic modeling to determine cost-effective intervention thresholds
- Can also be used as a powerful tool to counsel individual patients about the benefits of intervention

Benefits of FRAX®

- Guides the treatment decisions in osteopenic patients because the decisions are based on the risk of fracture, not T-score alone
- Identifies patients at high risk for fracture to ensure that they are offered treatment to lower risk
- Helps avoid giving medication to those who are at low risk and have little to gain from treatment

“Specific treatment decisions must be individualized”

Rewards of Osteoporosis Treatment

- Reduction in the risk of fracture
- Reduction in pain and disability
- Preservation of independence
- Reduction in height loss
- Positive effect on mortality (?)
- Positive effect of being “proactive”
- Positive effect on a surrogate such as BMD

Risks of Osteoporosis Treatment

- Economic cost of treatment
- Other costs of treatment: nuisance value of taking another medication, reminder of illness, worry about consequences of therapy
- Side effects of treatment
FRAX® Model: Caveats

• The model is not intended for application in patients who are already on pharmacologic therapy
• The model is based on femoral neck BMD only—not spine BMD
• Limited to 4 ethnicities in US (Caucasian, Black, Hispanic, Asian)
• It is not clear what margin of error is present in the fracture risk estimates
• It is not obvious that all risk factors carry equal weight in predicting the response to pharmacologic treatment

FRAX® Model: Additional Caveats

When Clinical Judgment is Needed

FRAX® may underestimate fracture risk:

• Some risk factors (glucocorticoids, smoking, alcohol, previous fractures) are dose-dependent, but FRAX® doesn’t incorporate “dose response”—it only incorporates those variables in a dichotomous way
• Some factors that increase the risk of fracture independently of their effect on BMD are not included in FRAX®:
 – Falls
 – Some diseases and medications (immobilization, diabetes, anticonvulsants, SSRIs, PPIs, TZDs)

Gnudi S et al. J Bone Miner Res 2001;16:2102-08
2008/2013 NOF Guidelines: Treatment Initiation

Post-menopausal Women And Men ≥50

- **Assess Risk Factors and Measure BMD if Patient Has Risk Factors**
- **T-score between -1.0 and -2.5**

- **Hip or Vertebral Fractures**
 - or
- **T-score ≤ -2.5 (Spine, Femoral Neck or Total Hip)**

- **10-year Probability of Hip Fracture**
 - ≥ 3%
 - or
- **Probability of All Major Fractures**
 - ≥ 20%

Differential Diagnosis Of Low BMD

- Primary osteoporosis (postmenopausal or age-related)
- Secondary osteoporosis (caused, wholly or in part, by other diseases or medications)
 - Secondary causes are not rare
- Idiopathic osteoporosis (disease characterized by low bone density and fractures in young adults without known cause)
- Other bone diseases
 - Osteogenesis imperfecta
 - Osteomalacia
 - Renal osteodystrophy

http://www.nof.org
Some Causes Of Secondary Osteoporosis In Adults

<table>
<thead>
<tr>
<th>Endocrine/Metabolic</th>
<th>Nutritional Conditions</th>
<th>Drugs</th>
<th>Collagen Disorders</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypogonadism</td>
<td>Malabsorption syndromes</td>
<td>Glucocorticoids</td>
<td>Osteogenesis imperfecta</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Hyperadrenocorticism</td>
<td>Malnutrition</td>
<td>Excess thyroid hormone</td>
<td>Homocystinuria</td>
<td>Myeloma and some cancers</td>
</tr>
<tr>
<td>Thyrotoxicosis</td>
<td>Chronic cholestatic liver disease</td>
<td>Heparin</td>
<td>Ehlers - Danlos syndrome</td>
<td>Immobilization</td>
</tr>
<tr>
<td>Anorexia nervosa</td>
<td>Gastric operations</td>
<td>GnRH agonists</td>
<td>Marfan syndrome</td>
<td>Renal tubular acidosis</td>
</tr>
<tr>
<td>Hyperprolactinemia</td>
<td>Vitamin D deficiency</td>
<td>Phenytoin</td>
<td></td>
<td>COPD</td>
</tr>
<tr>
<td>Porphyria</td>
<td>Calcium deficiency</td>
<td>Phenobarbital</td>
<td></td>
<td>Organ transplantation</td>
</tr>
<tr>
<td>Hypophosphatasia, in adults</td>
<td>Alcoholism</td>
<td>Depo-Provera</td>
<td></td>
<td>Mastocytosis</td>
</tr>
<tr>
<td>Diabetes mellitus, Type 1</td>
<td>Hypercalciuria</td>
<td>Aromatase inhibitors</td>
<td></td>
<td>Thalassemia</td>
</tr>
<tr>
<td>Hyperparathyroidism</td>
<td>Acromegaly</td>
<td>Hyperparathyroidism</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from AACE Guidelines on Osteoporosis

Most Common Causes Of Secondary Osteoporosis

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Conditions</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypogonadism</td>
<td>Vitamin D deficiency</td>
<td>Steroid therapy</td>
</tr>
<tr>
<td>Malabsorption</td>
<td>Hypercalciuria</td>
<td>Antiepileptics</td>
</tr>
<tr>
<td>COPD</td>
<td></td>
<td>GnRH agonists</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td></td>
<td>Depo-Provera</td>
</tr>
<tr>
<td>Myeloma</td>
<td></td>
<td>Aromatase inhibitors</td>
</tr>
</tbody>
</table>

Some unsuspected
How Often Do Healthy Women With Osteoporosis Have Unsuspected Disorders?

Study population: 664 consecutive postmenopausal women with a T-score of -2.5 or below
- 54% excluded for a known secondary cause
- 173 females (ages 46-87) without known secondary osteoporosis or prior lab abnormalities underwent lab evaluation
 - CBC, chemistry, 24-hour urine calcium, PTH, 25-OH vitamin D, most also had TSH, SPEP

44% of patients were found to have a secondary cause

Osteoporotic Women With New Diagnoses

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D deficiency (25-OH D <20 ng/mL)</td>
<td>20%</td>
</tr>
<tr>
<td>Hypercalciuria</td>
<td>10%</td>
</tr>
<tr>
<td>Malabsorption</td>
<td>7%</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>3%</td>
</tr>
<tr>
<td>Hyperparathyroidism</td>
<td>3%</td>
</tr>
<tr>
<td>Primary</td>
<td>1%</td>
</tr>
<tr>
<td>Secondary</td>
<td>5%</td>
</tr>
<tr>
<td>Over-replacement with T4 (4)</td>
<td>2%</td>
</tr>
<tr>
<td>Cushing’s disease</td>
<td><1%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
</tr>
</tbody>
</table>

Data reanalyzed from Tannenbaum C, et al. J Clin Endocrinol Metab. 2002;87(10):4431
using current definition of vitamin D deficiency (personal communication: Luckey MM)
Prevalence of Occult Secondary Osteoporosis

- Prevalence in studies that assessed urinary calcium and vitamin D:
 - Women and men, varying ages: 1-4 37%–63%
 - Post-hip fracture patients: 5 60%–80%
 - Bone loss on pharmacologic therapy: 6,7 ≥50%

No large, population-based studies; studies from referral centers vary by criteria for inclusion, extent of testing, and definition of vitamin D deficiency

Identifying the Patient with an Occult Disorder

- All patients deserve at least a limited laboratory evaluation prior to treatment
- No clinical parameter (even age or disease severity) identifies those most likely to have an occult disorder1
- The available data do not suggest that occult disease is more likely in patients with low Z-scores (i.e., in those whose density is lower than expected for age)1,2
- “Persistent” additional testing is appropriate if there is a statistically significant BMD decrease on therapy

1. Tannenbaum C et al. J Clin Endocrinol Metab 2002;87:4431
2. Gabaroi DC et al. Menopause. 2010;17:135
Evaluation Of The Patient With Osteoporosis

- Careful history and examination
- Laboratory testing
 - Chemistry
 - CBC
 - 24 hour urine calcium (and creatinine)
 - 25-OH vitamin D
 - *Thyroid function tests (TFTs) if symptoms warrant or the patient is on thyroid replacement therapy*

Identified 92% of new diagnoses at modest cost

<table>
<thead>
<tr>
<th>Laboratory test</th>
<th>Looking for</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>myeloma; malabsorption of iron, B12, folate</td>
</tr>
<tr>
<td>Serum chemistry</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>malabsorption; malnutrition</td>
</tr>
<tr>
<td>Globulin</td>
<td>myeloma</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>malignancy, cirrhosis, vitamin D deficiency</td>
</tr>
<tr>
<td>Calcium (high or low)</td>
<td>hyperparathyroidism, malabsorption</td>
</tr>
<tr>
<td>Phosphate</td>
<td>malnutrition, osteomalacia</td>
</tr>
<tr>
<td>BUN, creatinine</td>
<td>renal disease</td>
</tr>
<tr>
<td>25-OH vitamin D</td>
<td>vitamin D deficiency</td>
</tr>
<tr>
<td>24-hour urine calcium (and</td>
<td>hypercalciuria, malabsorption</td>
</tr>
<tr>
<td>creatinine)</td>
<td></td>
</tr>
</tbody>
</table>

Other tests as indicated by symptoms or results of above tests:
- PTH if urine or serum calcium abnormally high or low
- SPEP if CBC abnormal
- Test for celiac disease if low 24-hour urine calcium or anemia
Effectively identifies both hypercalciuria and malabsorption when results fall outside normal values (60-300 mg/day)—with a calcium intake around 1000 mg daily.

- Both disorders associated with higher rates of bone loss
- Calcium deficiency associated with diminished or absent BMD response to therapy
- Each condition requires a specific intervention for optimal patient management

Spot urine calcium does not detect malabsorption

38% of new diagnoses would have been missed without 24-hour urine calcium results

Importance of 24-hour Urine Calcium

Evaluate for other causes of bone loss, especially those that are serious or correctable

Low T-score ➔ Treatment