Fuchs Dystrophy: A New Paradigm in Diagnosis and Treatment

David G. Hwang, MD, FACS
Professor and Vice Chair
Kimura Endowed Chair in Ophthalmology
Director, Cornea Service and Refractive Surgery Services
University of California, San Francisco
December 2016

Disclosure

Shire – Consultant

None of the above are relevant to this talk.
I have no proprietary interest in any devices, drugs, or techniques discussed.

Fuchs Dystrophy

- Genetics and Pathogenesis
 - Molecular genetics and pathogenesis
 - Diagnosis and prognosis
- Treatment
 - Surgical therapy: DMEK
 - Medical therapy targets
Fuchs Dystrophy

- Genetics and Pathogenesis
 - Molecular genetics and pathogenesis
 - Diagnosis and prognosis
- Treatment
 - Surgical therapy: DMEK
 - Medical therapy targets

Fuchs Dystrophy

- Leading cause of corneal visual loss
 - 30% of US corneal transplants (14,000/year)
 - Visual loss due to corneal edema and/or guttata

Fuchs Genetics

- Minor forms of Fuchs caused by mutations in
 - COL8A, ZEB1, SLC4A11

CTG Expansion Causes Fuchs

- Trinucleotide repeat (CTG) expansion in TCF4 (transcription factor 4) intron (Wieben, 2012)
 - 25-73% Fuchs
 - 0-5% controls
 - More repeats = more severe disease
 (Soliman, 2015)
Molecular Pathogenesis

- Transcription of CTG repeats creates poly(CUG) RNA
- Poly(CUG) RNA sequesters MBNL1, a RNA splicing factor (Du, 2015)
- Splicing errors cause dysregulated transcription and accumulate toxic RNA (Mootha, 2016)
- Non-ATG translation of expansion repeats has been shown to create toxic homopolymeric proteins (Zu, 2011)

Trinucleotide Repeat Diseases

- CAG
 - Huntington’s disease, spinocerebellar ataxia
- CTG
 - Myotonic dystrophy, Fuchs dystrophy
- Other
 - Fragile X syndrome, Friedreich ataxia
Polymerase Slippage – Hairpin Loop

Looped hairpin is stabilized by the G and C nucleotides in the repeat

CTGCTGCTG
GTCGTCGTC

Loop repair may excise (contract) or incorporate (expand) the repeat segment

Above 35 repeats, the TNR expansion segment tends to persist/elongate

Trinucleotide Repeat Diseases

Implications

• Molecular diagnostic testing for Fuchs could have clinical relevance
 – diagnosis
 – risk profile assessment
• Understanding of pathogenesis can yield potential therapeutic targets

Fuchs Dystrophy

• Genetics and Pathogenesis
 – Molecular genetics and pathogenesis
 – Diagnosis and prognosis
• Treatment
 – Surgical therapy: DMEK
 – Medical therapy targets
Fuchs Dystrophy

- Genetics and Pathogenesis
 - Molecular genetics and pathogenesis
 - Diagnosis and prognosis
- Treatment
 - Surgical therapy: DMEK
 - Medical therapy targets

Endokeratoplasty is Treatment of Choice for Fuchs Dystrophy

- DSAEK – Descemet Stripping Automated Endothelial Keratoplasty
 - posterior stroma + endo (80-200 μ)
- DMEK – Descemet Membrane Endothelial Keratoplasty
 - DM + endo (20 μ)

Evolution of Keratoplasty?

<table>
<thead>
<tr>
<th>Year</th>
<th>PK</th>
<th>DLEK</th>
<th>DSEK</th>
<th>DSAEK</th>
<th>DMEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>21,620</td>
<td></td>
<td></td>
<td>21,211</td>
<td>344</td>
</tr>
<tr>
<td>2012</td>
<td>21,422</td>
<td></td>
<td></td>
<td>22,301</td>
<td>748</td>
</tr>
<tr>
<td>2013</td>
<td>20,954</td>
<td></td>
<td></td>
<td>23,465</td>
<td>1522</td>
</tr>
<tr>
<td>2014</td>
<td>19,294</td>
<td></td>
<td></td>
<td>23,100</td>
<td>2865</td>
</tr>
</tbody>
</table>

US Data. EBAA 2015 Annual Statistical Report
Clinical Outcomes

- 94% of patients achieve 20/40 or better BSCVA by 3 months
 - 63-80% 20/25
 - 26-44% 20/20
- Compare 12% 20/20 for ultrathin DSAEK
- Fewer higher-order aberrations

DMEK vs DSAEK

• Speed of visual recovery

 ✓ DMEK
 26%-44% 20/20 at 3 mo

 UT-DSAEK
 12% 20/20 at 3 mo

• Endothelial cell density

 ✓ DMEK
 (16% loss at 6 mo.)

 UT-DSAEK
 (36% loss at 6 mo., p < 0.05)

• Primary Graft Failure

 ✓ DMEK
 (1.4%)

 UT-DSAEK
 (3.9%)

 Ciriović A. Cornea 2015;34:11-17.

• Rejection: 2-year rates

 ✓ DMEK
 (1%)

 UT-DSAEK
 (3.3%)

DMEK vs DSAEK

- **Rejection: 2 year rates**
 - ✓ DMEK
 - (1%)
 - UT-DSAEK
 - (3.3%)
 - *vs: conventional DSAEK (7-12%)*

- **Patient satisfaction**
 - ✓✓✓✓ DMEK
 - UT-DSAEK

 [Hwang/UCSF]

- **Patient satisfaction**
 - In two DMEK vs. DSAEK contralateral studies
 - Satisfaction score: DMEK > DSAEK (Goldich)
 - 9/10 prefer DMEK (Maier)

 Maier AK. Eye 2014 Nov 21 epub ahead of print]
Advantages

UT-DSAEK
- Donor preparation
- Graft deployment
- Rebubble rate
- Learning curve

DMEK
- Speed of visual recovery
- Endothelial cell loss
- Primary graft failure
- Allograft rejection rate
- Patient satisfaction

My EK Algorithm

- **DMEK ideal for**
 - Fuchs dystrophy or mod. corneal edema
 - Uncomplicated anatomy
 - Visual potential of 20/20
 - Preop vision 20/60 or better

My EK Algorithm

- **Ultrathin DSAEK ideal for**
 - Severe corneal edema
 - Tubes, iris defects, absent post. capsule
 - Status post vitrectomy
 - Visual potential of 20/25 or worse
 - Preop vision 20/70 - CF

My EK Algorithm

- **Reserve PK for**
 - Concurrent stromal scarring
 - Need for combined vitreoretinal surgery
 - Flat or absent anterior chamber requiring open sky reconstruction
 - Inability to comply with postop positioning
 - Visual potential of 20/200 or worse
 - Preop vision HM - LP
Medical Therapy for Fuchs?

- Understanding of molecular pathogenesis yields a variety of potential therapeutic targets to slow / halt progression
- Promotion of wound healing/repair is another potential treatment avenue
- Rho kinase has been shown to promote corneal endothelial wound repair

Rho-Kinase Inhibitors in Fuchs

Koizumi N. Cornea 2013;32:1167-70

Koizumi N. Cornea 2013;32:1167-70
Conclusions

- The CTG repeat expansion mutation in TCF4 is the major cause of Fuchs
- DMEK is an attractive option for surgical treatment of Fuchs
- Improved understanding of pathogenesis is leading to exploration of medical therapy for Fuchs dystrophy

Questions?

david.hwang@ucsf.edu