TOTAL PANCREATECTOMY AND ISLET AUTOTRANSPLANTATION IN CHILDREN

Andrew Posselt, MD, PhD
Dept. of Surgery
University of California, San Francisco

Disclosure

The speaker has no conflicts of interest or financial ties to disclose.

Chronic Pancreatitis

- DEBILITATING PAIN
 * inability to eat & anorexia
 * malnutrition & weight loss
 * diabetes (endocrine insufficiency)
 * chronic relapsing symptoms

Etiology - Adults

- ethanol use (>100 g/day) 60 - 70%
- idiopathic 20 - 30%
- other causes 10%
 * pancreas divisum
 * hereditary pancreatitis
 * hyperlipidemia
 * autoimmune pancreatitis
 * genetic polymorphisms
 - cystic fibrosis transmembrane conductance regulator (CFTR)
 - pancreatic secretory trypsin inhibitor (SPINK1)

- affects approx. 80,000 people per year
- $65,000,000 annual cost
- 87% adults (mean age 40-50y), 13% children
- 25-fold increased risk of pancreatic cancer
Etiology - Children

<table>
<thead>
<tr>
<th>Chronic pancreatitis patients with history of >1 episode</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acute pancreatitis</td>
<td>73</td>
<td>(90)</td>
</tr>
<tr>
<td>Risk factors for pancreatitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic</td>
<td>61 (80)</td>
<td></td>
</tr>
<tr>
<td>Prior ERCP</td>
<td>35 (48)</td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td>14 (19)</td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>11 (15)</td>
<td></td>
</tr>
<tr>
<td>Infections</td>
<td>9 (12)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>5 (7)</td>
<td></td>
</tr>
<tr>
<td>Abdominal</td>
<td>3 (4)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2 (3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>73 (100)</td>
<td></td>
</tr>
</tbody>
</table>

- 44% male, 56% female
- 7-8 y Abdominal pain
- 5-6 y Dx of CP
- 1-2 y Narcotic use

Schwarzenberg, et al., JPeds 2015

Patient Selection

- Painful chronic pancreatitis or disabling acute relapsing pancreatitis refractory to medical/endoscopic therapy
- Narcotic dependence and/or significantly impaired quality of life
- Imaging/EUS evidence of CP (MRI, MRCP, CT, ERCP) OR relapsing acute pancreatitis (>3 episodes over 6 mos) OR hereditary pancreatitis w/ Sx
- Non-diabetic OR C-peptide positive diabetes
- Patient and family accept (and can manage) risk of diabetes and need for lifelong pancreatic enzyme replacement

Contraindications:

- Active alcohol use (documented abstinence for >6mos)
- Illegal drug use
- Pancreatic cancer (maybe not IPMN)
- Advanced liver, lung, heart disease
- Relative – absent C-peptide

Treatment Options

- Narcotic pain meds, enzyme replacement
- Endoscopic therapies
 - sphincterotomy, stents, dilations
- Celiac plexus ablation
- Surgical decompression (Puestow, Frey, Beger) or partial resection (Whipple, distal)
 - NOT effective in most pts
- Total Pancreatectomy
 - Very effective in most pts, but results in brittle diabetes
- Islet Autotransplant restores endocrine function after TP (TP/IAT)

TP-IAT at UMN

- 1.2% in-hospital mortality; 89% (adult) and 98% (child) 5-y survival
- 90% C-peptide pos., 33% partial function
- 30% insulin independent at 3 y (25% adults, 55% children)
- Pain improved in 85% adults, 94% children (67% pain-free)
- 15.9% had complications requiring reoperation (bleeding, anastomotic leaks)

Sutherland, et al., JACS 2012
Pros and Cons of TP/IAT in Pediatric CP

PROS:
- Resolution of chronic refractory pain
- Improved QOL
- Elimination of pancreatic cancer risk

CONS:
- High cost
- Prolonged hospital stay
- Irreversible operation
- Life-long dependence on exogenous enzymes
- Diabetes and potential need for chronic insulin therapy
- Absence of counter-regulatory hormones
- GI side effects (dysmotility, malabsorption, diarrhea, malnutrition, etc)

Timing
- Earlier is better!
- Prior to development of central sensitization and opioid-induced hyperalgesia which can lead to pain recurrence
- Prior to development of diabetes, malignancy
- Optimization of islet yield/function
 - Prior to invasive surgical procedures (partial resection, ductal drainage)
 - Early in course of disease to minimize fibrosis
Multi-Disciplinary Team Is A MUST!

Gastroenterology Nursing Endocrinology
ICU Team Pain Management Psychiatry
Islet Manufacture Surgery Social Work

The Procedure

Durability of Pain Control

Genetic/Hereditary

![Graph showing Durability of Pain Control](Chinnakotla, et al., JACS 2014)

Nonhereditary

![Graph showing Durability of Pain Control](Chinnakotla, et al., JACS 2014)

Durability of Islet Function

Insulin Requirements

![Graph showing Insulin Requirements](Wilson, et al., Ann Surg 2014)

HbA1c

![Graph showing HbA1c](Wilson, et al., Ann Surg 2014)

VERY FEW pts developed diabetes-related complications

Chinnakotla, et al., JACS 2014

TP-IAT Particularly Effective in Children with CP

Narcotic Use

Insulin Independence

School Attendance and Days of Impaired Activity

Islet Function and Insulin Independence

- 25-40% insulin independent in most large cohorts
- Most insulin dependent patients have graft function
 - Low insulin needs
 - + C-peptide (nearly 90%)
- Benefit of islets, even if on insulin
 - Stable glycemic control
 - Avoid “brittle” (labile) diabetes
 - Absent hypoglycemic episodes

QOL by SF-36 Assessment - Children

Sutherland et al., Transplantation 2008
Ahmed et al., JACS 2005
Webb et al., Pancreas 2005

Bellin, et al., UMN data
Who Becomes Insulin Independent?

Predictors:

- **Islet number (mass/yield)**
 - 100% function, 70% independent with >5000 IE/kg
 - 83% function, 30% independent with 2501-5000 IE/kg
 - 59% function, 15% independent with <2500 IE/kg
- **Prior surgery**
 - Lower yield after surgical drainage/distal pancreatectomy
- **Age**
 - Younger patients have higher rates of insulin independence
- **Other characteristics**
 - Duration of disease, islet quality, insulin resistance

Insulin Independence and IEQ/Kg

- 6 months
- 12 months
- 24 months
- 36 months

Islet Yield and Prior Pancreatic Surgery

<table>
<thead>
<tr>
<th>IEQ/Kg</th>
<th>Baseline</th>
<th>Whipple</th>
<th>Beger/Frey</th>
<th>Distal</th>
<th>Puestow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>3795</td>
<td>3647</td>
<td>2654</td>
<td>1973</td>
<td>1883</td>
</tr>
</tbody>
</table>

High Likelihood of Insulin Independence in Young Children

- Children 5-18 years of age:
 - 44% ever achieve insulin independence
 - 85% of children <10 years of age have documented insulin independence

Sutherland et al., Transplantation 2008
Ahmad et al., JACS 2005
Webb et al., Pancreas 2008
Islet Neogenesis in Children with CP

Interconnected duct-like (arrows) and endocrine structures (arrowheads) surrounded by fibrosis

Insulin pos. cells surrounded by duct-like structures

Islets separate from ductal issue

UCSF Inpatient Care Algorithm

Day 1
PCA
Start TF/enzymes
IV Anti-emetics
NG out/GT to gravity, NPO
Insulin drip
Ambulate to chair
Consult Endocrine, Pain Svcs

Day 2
PCA
TF/enzymes
IV Anti-emetics
Insulin drip
Ambulate x1
Order PT/OT Eval & Treat

Day 3
PCA transition basal to long-acting TF/enzymes
IV Anti-emetics
Insulin drip
Ambulate x3

Day 4-5
PCA transition to short acting elixir
Oral pain meds
TF at goal
Bowel Regimen
Start Lantus, D/C insulin drip
Start Diabetic education

Day 6
ADAT
Start TF education/Discharge class
Bowel Regimen
Continue plan, eval for complications

Day 7-8
Supplement education prn
Continue plan, eval for complications

Consider transfer to Home/Rehab when following are met:
TF stable
Adequate water intake to prevent IV depletion/dehydration
Diabetes stable, not requiring daily titration of Diabetes therapy
No surgical concerns
Narcotic dose stable, < 3 extra IV doses/day

UCSF Experience

- 2004 - 2015: 28 cases
- 22 cases since 2014 (50% male, 8 children)
- Mean age 38 years (range 4 to 72)
- 10 islet isolations for other centers

- Etiologies of CP:
 - idiopathic/familial 60%
 - pancreas divisum 10%
 - remote alcohol abuse 30%
 - biliary disease 0%

- Prior pancreatic surgery
 - Puestow procedure 33%
 - distal pancreatectomy 25%
 - pancreaticoduodenectomy 8%

Pediatric TP/IAT at UCSF

8 Children (2013-2016)

<table>
<thead>
<tr>
<th>Pt</th>
<th>DOS</th>
<th>Dx</th>
<th>Age</th>
<th>Weight</th>
<th>IEQ</th>
<th>IEQ/kg</th>
<th>Current Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/7/13</td>
<td>CFTR/SPINK</td>
<td>10</td>
<td>32 kg</td>
<td>264,234</td>
<td>8,257</td>
<td>full (has T1DM)</td>
</tr>
<tr>
<td>2</td>
<td>2/10/14</td>
<td>PRSS1</td>
<td>12</td>
<td>41 kg</td>
<td>185,840</td>
<td>4,425</td>
<td>5-10U/d</td>
</tr>
<tr>
<td>3</td>
<td>5/7/15</td>
<td>P. Divisum</td>
<td>16</td>
<td>50 kg</td>
<td>432,200</td>
<td>7,582</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9/8/15</td>
<td>SPINK</td>
<td>4</td>
<td>17 kg</td>
<td>186,600</td>
<td>10,724</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4/4/16</td>
<td>PRSS1</td>
<td>7</td>
<td>24 kg</td>
<td>207,680</td>
<td>8,652</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5/24/16</td>
<td>PRSS1</td>
<td>10</td>
<td>41 kg</td>
<td>331,420</td>
<td>8,163</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5/26/16</td>
<td>CF/SPINK</td>
<td>14</td>
<td>69 kg</td>
<td>688,822</td>
<td>9,983</td>
<td>weaning (5mos)</td>
</tr>
<tr>
<td>8</td>
<td>8/1/16</td>
<td>CF</td>
<td>16</td>
<td>124 kg</td>
<td>187,400</td>
<td>1,551</td>
<td>weaning (2mos)</td>
</tr>
</tbody>
</table>

MEAN±SD 11.4±4.3 310.547±7.412 0.3028

- 4/8 pain-free off narcotics
- 2/8 weaning (intermittent narcotics only)
- 2/8 managed in LA (at least 1 weaning)
Patient 4

Clinical History
- 3yo female presented with pancreatitis (SPINK1 mutation) in December 2014
- Conservative management with NPO, TPN, narcotics
- Developed pseudocyst, multiple ERCPs
- Transferred to UCSF
- Found to have pancreatic leak with pseudocyst, fistulous communication to chest causing mediastinitis, pulmonary embolism, left lung

Surgical Course:
- 06/24/15 – surgical cystgastrostomy – no improvement
- 07/11/15 – VATS, washout of thoracic cavity and mediastinum, left with 2 chest tubes and 1 mediastinal tube
- 07/19/15 – ex-lap, peritoneal drain placement – some improvement
- TP/IAT 9/8/2015, pancreas inflamed, extremely fibrotic 186,600 IEQ (10,724 IEQ/kg) infused intraportally

Pediatric Patient 4

Lengthy post-op hospitalization – pain control, nutrition
- Now 1 year out, off pain meds, tolerating regular diet and going to Kindergarten

Summary – TP/IAT
- TP/IAT is very effective in relieving pain while minimizing risk of labile diabetes
- Diabetes outcomes are best with high yield, surgically naïve pancreas, young children
- Long-term insulin independence and robust insulin secretory capacity are feasible
- Overall benefit of the procedure is markedly compromised w/o IAT, but many insurance carriers do not cover
Thank You!

Islet Isolation:
- Florinna Dekovic
- Vinh Nguyen
- Greg Szot

Clinical Team:
- Michelle Klosterman
- Marilyn McEnhill
- James Ostroff
- Emily Perito
- Sue Rhee
- Steve Gitelman
- Roger Long
- Ramana Naidu
- Kara Campbell
- Neesha Mehta
- The transplant surgeons