Fever in the ICU

Infectious Diseases in Clinical Practice
February 2018

Jennifer Babik, MD, PhD
Associate Clinical Professor
Division of Infectious Diseases, UCSF

Learning Objectives

By the end of this talk, you will be able to:

1. Construct a framework for the differential diagnosis of fever in a patient in the ICU

2. Describe the common clinical presentation, diagnosis, and management of common infections in the ICU

3. Recognize the common non-infectious etiologies for fever in the ICU
Roadmap

- Introduction/Framework
- Case-based approach to common infectious and non-infectious etiologies for fever in the ICU
 - CLABSI
 - CA-UTI
 - VAP
 - Nosocomial sinusitis
 - Acute cholecystitis
 - “Double-covering” GNRs
 - Non-infectious etiologies (drug, VTE, central, malignancy)

Definition of Fever

- Definition of fever is arbitrary
 - \(\geq 38.3°C \) (101°F) commonly used (IDSA/ACCCM)
 - Use a lower threshold in immunocompromised patients
 - \(T < 36.0°C \) should also prompt work-up for infection

- Note that patients on CRRT or ECMO may not mount a fever even when infected

Measurement of Fever

- Central thermometers (bladder, rectal, esoph) ≈ pulmonary artery temperatures

- Peripheral thermometers have:
 - Poor correlation with central temperatures (± 0.5-2°C)
 - High specificity (~95%) but poor sensitivity for detecting fever
 - Oral or tympanic: 75% sensitive
 - Temporal 63% sensitive
 - Axillary 42% sensitive

Fever in the ICU: Epidemiology

- Fever is common (25-70% of ICU patients)
- Non-infectious etiologies occur frequently
- Most common causes:
 - Infections: PNA, bloodstream, abdominal
 - Non-infectious: post-op, central fever, drug fever

Framework for Building the DDx

1. **Is this a complication of the underlying reason for admission?**
 - Untreated, relapsed, or metastatic focus of infection
 - Post-surgical infection (surgical site infection, abdominal abscess)

2. **Is this a separate nosocomial process?**
 - Hospital-acquired PNA (HAP, VAP)
 - CA-UTI
 - Central Line-Associated Blood Stream Infection (CLABSI)
 - *Clostridium difficile*

3. **Is this non-infectious?**
 - Drug fever
 - Central fever
 - Post-op fever

Initial Evaluation

- **History:**
 - Any change in secretions or respiratory status?
 - Any diarrhea?

- **Exam to include:**
 - Careful neuro exam
 - Sinus exam
 - Back and joint exam
 - Skin exam:
 - Line sites
 - Decubitus ulcers
 - Rashes
 - Remove bandages

- **Labs:**
 - CBC with diff (look for eos)
 - LFTs (drug reaction, acalculous cholecystitis)

- **Micro:**
 - Blood cultures (DTTP)
 - UA +/- Ucx
 - Respiratory cultures?
 - Cdiff testing?

- **Imaging:**
 - CXR
 - Chest or abdominal imaging?
Approach to Management

- Do you need to treat empirically or can you wait for cultures/diagnostics?
- Is there a source control procedure needed?

For empiric therapy:
- How sick is the patient?
- Where do you think the patient is infected?
- Prior positive cultures?
- Prior antibiotics?
- Is the patient at risk for MDR organisms?

Case #1

A 36 year old man with AML is in the ICU for leukopheresis and induction therapy and clinically improves. He then spikes a fever but remains stable.

- He is bacteremic with *Staph epidermidis* from both his line and peripheral blood cultures
- He improves with vancomycin. Can we leave the tunneled line in?
Would You Change the Line?

1. Yes
2. No

Central Line Infections

- Exit site infection (<2cm from exit site)
 - With or without BSI
 - If blood cultures neg, can try to salvage the line.

- Tunnel infection (>2cm)
 - With or without BSI
 - Port pocket infection
 - Remove the line, even if blood cultures neg.

- Bacteremia without overlying skin changes
 - BSI by definition
 - Line removal depends on organism, clinical situation
Central-Line Associated BSI (CLABSI): Diagnosis

- **Clinical findings at exit site in <3%**

- **Catheter tip culture:**
 - (+) peripheral box and > 15 cfu/plate from catheter tip
 - 80% sensitive, 90% specific
 - But >80% of catheters removed unnecessarily

CLABSI: Differential Time to Positivity

- Allows for diagnosis without removing the line

- Culture from line + peripheral blood at the same time

- CLABSI = blood culture drawn from central line turns positive **at least 2 hrs before** the peripheral culture

- **Test characteristics**
 - 85-95% sensitive
 - 85-90% specific
 - Not as good for Candida

When to Remove the Line

Complicated Infections
1. Severe sepsis
2. Persistent bacteremia (>72h of appropriate ABx)
3. Septic thrombophlebitis
4. Exit site or tunnel infection
5. Metastatic infection: endocarditis, osteomyelitis

Virulent Organisms
1. *Staphylococcus aureus*
2. *Pseudomonas*
3. *Candida*

Line Management for Other Organisms

<table>
<thead>
<tr>
<th>Organism</th>
<th>PICC/Short-term CVC</th>
<th>Tunneled Cath/Port</th>
<th>HD Catheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coag-negative staphylococci</td>
<td>Remove or retain</td>
<td>Remove or retain</td>
<td>Remove, retain, or guidewire exchange</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>Remove</td>
<td>Remove or retain</td>
<td>Remove, retain or guidewire exchange</td>
</tr>
<tr>
<td>Other GNRs (not Pseudomonas)</td>
<td>Remove</td>
<td>Remove or retain</td>
<td>Remove, retain or guidewire exchange</td>
</tr>
</tbody>
</table>

Use clinical judgment based on:
- Severity of infection
- Access options (talk to renal!)
- Risk of removal/replacement

Mermel et al, Clin Infect Dis 2009, 49:1
Line Salvage: General Principles

- Which patients?
 - Not for complicated infections, exit site infections, or virulent organisms
 - Only studied in long-term catheters

- How to treat?
 - Give systemic ABx + antibiotic lock therapy for 7-14 d
 - Get surveillance blood cultures (1 wk after Abx stop)

Antibiotic Lock Therapy

- Goal is to get supra-therapeutic ABx concentrations to penetrate biofilms

- Logistics
 - Work with pharmacy and nursing
 - Mix with heparin, dwell times are variable but usually <48h
 - Common Abx:
 - Gram positives: linezolid, vancomycin, cefazolin
 - Gram negatives: ceftazidime, ciprofloxacin, gentamicin

Mermel et al, Clin Infect Dis 2009, 49:1
Line Salvage with Antibiotic Lock Therapy

Overall Success Rate (%)

- Systemic Abx: 30-45%
- Systemic Abx + Lock: 60-75%
- Line removal: >90%

Abx Lock Efficacy by Organism (%)

- CoNS: 80-90%
- GNRs: 80-90%
- S. aureus: 40-55%

What About Guidewire Exchange?

- **Goal is to eliminate biofilm entirely**

- **How good is it?**
 - Limited data, mostly HD catheters
 - Seems at least equal to ABx lock (~70% cure), maybe better
 - Likely better than ABx lock for *S. aureus*

- **When to consider using?**
 - If HD catheter removal is clearly indicated but not feasible (especially for *S. aureus*)
 - If you want to salvage an HD line but can’t use lock therapy

Line Management: Take-Home Points

- Differential time to positivity (line positive ≥ 2 hours before peripheral) allows for diagnosis of CLABSI without line removal

- All lines should be removed for:
 - Any complicated infection
 - *S. aureus*, *Pseudomonas*, or *Candida*

- Line management for other organisms depends on line type (lower barrier to remove line for short term catheter > long-term catheter > HD catheter)

- Use antibiotic lock when possible for line salvage

Case #2

55 y/o woman in the ICU after a complicated spinal surgery. She remains intubated, spikes a fever on POD#3 and is pan-cultured.

- She has thick secretions and a new CXR infiltrate.
- mBAL is growing MRSA.
- UA (catheter): 25-50 WBC, Ucx positive for VRE.
Do You Need to Treat the VRE?

1. Yes
2. No
3. Not sure

Asymptomatic Bacteriuria

ASB = (+) urine culture AND no signs/symptoms of UTI
Asymptomatic Bacteriuria is COMMON!

- Seen in up to:
 - 25% of elderly, diabetic, HD patients, short-term catheters
 - 50% of patients in long term care facilities
 - ~100% of patients with long-term catheters

- Of positive urine cultures obtained on the wards after hospital admission → ~90% are ASB

- Do not treat EXCEPT in pregnant women, GU procedures, neutropenia/renal transplant

The Heart of the Problem

- It’s Hard to Ignore a Positive Culture

- Proof of concept study:
 - At Mount Sinai, 90% of their inpatient urine cultures were ASB, and 50% were treated with ABx
 - They stopped reporting these (+) urine cultures in the EMR
 - Results:
 - The % of ASB that was treated dropped by 80%
 - No untreated UTIs and no sepsis

How To Distinguish ASB vs. CA-UTI?

- Does the UA help? → Yes, but only if negative
 - Pyuria is seen in >50% of catheterized patients with ASB
 - But the absence of pyuria suggests an alternative dx

- Does the organism help? → NO
 - The same organisms cause ASB and UTI

- Use clinical context – does the patient have signs/symptoms of UTI?

What if I Can’t Assess Symptoms?

How to define UTI in patients with a catheter or AMS?

- Signs/symptoms consistent w/ UTI
 - Fever, rigors, AMS, malaise
 - Flank pain, CVAT, pelvic pain
 - Acute hematuria
 - Spinal cord injury: spasticity, autonomic dysreflexia, unease

- No other source of infection (i.e., diagnosis of exclusion)

How to Interpret Urine Studies in a Patient With a Foley or AMS

Alternate Diagnosis Likely?
(Signs/ sx of other illness present)

- **Yes**
 - Do not order U/A, urine cx
 - U/A, urine cx (-)
 - Do not treat for UTI
 - U/A (-), urine cx (+)
 - Asymptomatic bacteriuria
 - U/A (+), urine cx (+)
 - Treat for UTI (If no alternate dx identified)
- **No**
 - Send U/A, urine cx
 - U/A (+), urine cx (-)
 - Do not treat

CA-UTI: Treatment

- **Antibiotics**
 - Empiric Rx: ceftriaxone, ertapenem, pip/tazo, cefepime
 - Duration:
 - 7 days if there is prompt resolution of symptoms
 - 10-14 days if response is delayed

- **Catheter change?**
 - Yes, especially if the catheter has been in for >2 weeks
 - This has been associated with:
 - CA-UTI at 28d
 - time to resolution of sx

Candiduria: Who Needs Treatment?

- Candiduria is very common in catheterized patients
- **Candiduria is usually asymptomatic**
 - In general, don’t treat! (exceptions: same for ASB)
 - Change the foley: can eliminate candiduria in 20-40%
- Symptomatic candiduria (uncommon)
 - Look for same symptoms as bacterial UTI
 - Treat if you are convinced

Candida UTI: Treatment Options

- **Fluconazole** is the drug of choice
- Excellent urine levels
 - 10-fold higher than in serum
 - Can get levels > MIC for fluc-resistant species like *C. glabrata*
- What about a fluconazole-resistant organism?
 - Try fluconazole and re-check a urine culture
 - Other options: flucytosine, conventional amphotericin
 - Other azoles, echinocandins have poor urinary penetration

ASB vs. CA-UTI: Take-Home Points

- ASB is very common and rarely needs Rx in the ICU
- Pyuria ≠ UTI, but the absence of pyuria → alternative dx
- UTI diagnosis in a patient with a catheter requires:
 - Signs and symptoms compatible with UTI
 - No other source for infection (i.e., diagnosis of exclusion)
- CA-UTI can be treated with 7 days of antibiotics if symptoms resolve quickly
- Fluconazole is the drug of choice for *C. albicans* (and often non-albicans)

Case #3

57 y/o man admitted with SAH s/p coiling, c/b vasospasm and stroke, now with persistent fevers. He has a PICC line, foley, and is intubated. He has been on vanc + pip/tazo for 5 days and continues to spike. No diarrhea, secretions unchanged.

- F 39.1, HR 65, other vitals normal.
- Exam is unremarkable.
- WBC is 11 (eos 0.63), Cr and LFTs normal.
- Blood cultures, UA, CXR, LP all negative
What Would You Do With His Antibiotics?

1. Escalate pip/tazo to meropenem
2. Add tobramycin
3. Add ganciclovir
4. Stop antibiotics

Non-infectious Etiologies for Fever

- Drug Fever
- Central fever
- DVT/PE
- Malignancy
- Post-op fever
- Rheumatologic
- Transfusion reaction
- Transplant rejection
- Adrenal insufficiency
Drug Fever

- Diagnosis of exclusion
- Clinical features:
 - May appear well and be unaware of fevers
 - No typical fever pattern
 - Pulse-temperature dissociation (11%)
 - Rash (5-10%)
 - Eosinophilia (~20%)
- Timing:
 - 7-10 d after starting a drug (with re-challenge, can be hours)
 - Usually defervesce within 1-2 days of stopping the drug

Drug Fever is Usually High-Grade

Drug Fever: Treatment

- Discontinue or change to another drug class if possible
- If benefit > risk to continue, can try to pre-treat:
 - Corticosteroids and/or antihistamines
 - But watch for signs/sx of progression of hypersensitivity
- If fever with severe adverse effects, avoid rechallenge
- Important to document potential allergy with as much detail as possible

Central Fever

- Accounts for ~50% of fever in the NICU
- Which patients?
 - Brain tumors, SAH, intraventricular bleed
 - Associated with vasospasm
- Clinical characteristics:
 - Appears within 72 h of admission
 - Persists for longer than infectious causes of fever
 - No difference in height of fever c/w infectious fever

Hocker et al, JAMA Neurol 2013, 70:1499.
VTE and Fever

- 5-15% with PE/DVT
- Characteristics:
 - Usually <38.9
 - Peaks on day of PE
 - Gradually subsides within 1 week

VTE and Leukocytosis?

- Patients presenting to the hospital with acute PE and no other cause for leukocytosis (n=266)

Tumor Fever

- Which cancers?
 - Most common: lymphoma, leukemia, renal cell
 - But any cancer can do it
 - Pathophys: cytokines, tumor necrosis

- Clinical features:
 - Tmax usually between 38-39°C
 - Usually intermittent fevers, spiking once (most common) or twice daily
 - +/- Leukocytosis

- Data is conflicting on use of naprosyn test, but some studies show that defervesence with naprosyn predicts tumor fever

Non-infectious Fever: Take Home Points

- Always consider it, but it’s a diagnosis of exclusion

- Drug fever is usually high grade (>39°C) - look for eosinophils, temp-pulse dissociation, and rash although these are only seen in <20%

- Central fever is associated with SAH, vasospasm

- Fevers due to VTE or malignancy are usually <39°C
Case #4

65 y/o man with cirrhosis is intubated for severe influenza and ARDS. He had been slowly improving but then over the last 2 days has starting having fevers to 38.4 with new production of thick secretions. He has trouble following commands when sedation is lifted.

- Blood and urine cultures neg
- CXR unchanged
- Head CT: pansinusitis

Your Next Diagnostic Step is:

1. Sinus puncture
2. Lumbar puncture
3. Mini-BAL or endotracheal aspirate
4. BAL
Pneumonia in the ICU

- **Hospital-Acquired PNA (HAP)** = PNA acquired after 48h in the hospital and not incubating at admission

- **Ventilator-Associated PNA (VAP)** = PNA acquired after 48h of intubation (subset of HAP)

- Microbiology overall is similar:
 - Gram (+): *S. aureus*, particularly MRSA
 - Gram (-): *Pseudomonas, E. coli, Klebsiella*
 - *Pseudomonas, Stenotrophomonas, Acinetobacter* more common in VAP

HAP/VAP IDSA Guidelines 2016: What’s New?

1. HCAP no longer included (not at high risk for MDR)

2. Recommendation for semi-quantitative endotrachaeal aspirate over invasive methods (BAL, mini-BAL)

3. Slightly less emphasis on using 2 antibiotics against *Pseudomonas* for empiric coverage

4. Duration of therapy = 7 days for all pathogens

Kalil et al, IDSA/ATS Guidelines, CID 2016
VAP: Microbiologic Diagnostics

- Get blood cultures (~15% are positive)
- 2016 guidelines recommend semi-quantitative endotracheal aspirate over invasive sampling (mini-BAL, BAL) (weak recommendation, low quality evidence)

Why?
- No difference in outcomes (mortality, ICU days, ventilation)
- Requires less resources
- Both ~75% sensitive but mini-BAL/BAL more specific (80% vs 50%)

Kalil et al, IDSA/ATS Guidelines, CID 2016

VAP: Clinical Diagnosis

- Also look at change in oxygenation over time
- In ARDS, consider PNA if have only ≥1 clinical criteria because may not see CXR change

New or progressive CXR infiltrate + 2 clinical criteria
- Fever
- Leukocytosis/leukopenia
- Purulent secretions

VAP/HAP: Empiric ABx

- Cover for *S. aureus, Pseudomonas, GNRs*

- Do you need MRSA coverage?
 - Yes if MDR risk, >20% local *S. aureus* isolates are MRSA, high risk of mortality

- Do you need 2 drugs for *Pseudomonas*?
 - Yes if MDR risk, >10% local GNRs resistant to monotherapy Abx, high risk mortality
 - Use clinical judgment

Risk of MDR VAP
- Prior IV Abx in 90 d
- Septic shock
- ARDS
- ≥5 d in hospital
- Acute HD/CRRRT

Risk of MDR HAP
- Prior IV Abx in 90 d

VAP/HAP: ABx Menu

<table>
<thead>
<tr>
<th>MRSA</th>
<th>Anti-pseudomonal (β-lactam)</th>
<th>2nd Anti-pseudomonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin</td>
<td>Piperacillin/tazobactam</td>
<td>Levo/ciprofloxacin</td>
</tr>
<tr>
<td>Linezolid</td>
<td>Cefepime/ceftazidime</td>
<td>Aminoglycosides</td>
</tr>
<tr>
<td></td>
<td>Meropenem/imipenem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aztreonam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAP only: levo/ciprofloxacin</td>
<td></td>
</tr>
</tbody>
</table>
Duration of Antibiotics in VAP (8 vs 15 days)

- RTC of 400 patients with VAP randomized to 8 vs. 15 days of ABx

- 8-day group had:
 - No difference in mortality, recurrent infections, ICU LOS
 - More ABx-free days and less MDR organisms if recurrent
 - But...higher pulmonary reinfection rate (41 vs 25%) if had a glucose nonfermenter (*Pseudomonas, Acinetobacter, or Stenotrophomonas*)

- This led to the recommendation for 15 days for glucose nonfermenters and 8 days for everyone else

New IDSA Guidelines: Duration of ABx in VAP

- Systematic reviews of 6 RCTs comparing short (7-8 days) vs long (10-15 days) course therapy:
 - Confirmed benefit of short course Rx (more Abx free days, less recurrences with MDRO) and no difference in cure, mortality
 - Glucose-nonfermenter subgroup: no difference in recurrence, mortality

- Bottom line:
 - 7d treatment course, even for glucose non-fermenters
 - Extrapolate data to HAP
 - Note MRSA IDSA guidelines recommend 7-21d for MRSA PNA

VAP/HAP: When to Stop Empiric Vanco?

- Factors which make MRSA less likely:
 - Low clinical suspicion based on disease severity
 - Negative cultures (before antibiotics)
 - Negative MRSA nasal swab and low local prevalence of PNA due to MRSA

- What about negative blood cultures?
 - Caution as bacteremia only found in 5-10% of cases of MRSA PNA

HAP/VAP: Take Home Points

- Diagnosis is based on a combination of clinical and microbiologic parameters

- Think about risk factors for MDR pathogens and local resistance patterns to guide empiric therapy

- Duration of therapy = 7 days in most cases
Short Take: Nosocomial Sinusitis

- **Epidemiology:**
 - Radiographic sinusitis in 25-75% of ICU pts
 - But etiology of nosocomial fever in ~5%
 - Radiographic sinusitis ≠ infectious sinusitis

- **Micro:** *Pseudomonas, S. aureus*, can be polymicrobial

- **Clinical:** classic signs/sx of sinusitis often absent

- **Dx:** CT, aspirate by ENT to confirm dx and guide ABx

- **Treatment duration:** 7 days

Short Take: Acalculous Cholecystitis

- **Rare (~1%) of all ICU patients**

- **Diagnosis:**
 - Symptoms/signs often not helpful
 - LFT abnormalities in >60% but nonspecific
 - US > CT
 - GB wall thickness ≥ 3.5 mm (80% sensitive, 98% specific)
 - Sludge, pericholecystic fluid, GB distention > 5cm, sonographic Murphy’s
 - HIDA: sensitivity only 70-80%

- **High risk death (30%), GB gangrene (50%), perforation (10%)**

- **Treatment**
 - Cholecystectomy often not possible → percutaneous chole tube
 - Antibiotics → target GNRs, Enterococcus, anaerobes +/- Candida

Case #5

A 57 year old woman with metastatic breast cancer undergoing chemo and extensive prior antibiotic treatment (including recent levofloxacin) is admitted to the ICU with septic shock.

- She is febrile to 39.6°C, tachy to 120s, rapidly uptitrated to max doses on 3 pressors.
- WBC is 1.4 (ANC 800), Cr 1.8, other labs normal.
- Blood and urine cultures are drawn and she is started on vancomycin plus meropenem.

What Would You Do With Her ABx?

1. No changes (this is a source control issue)
2. No changes (ABx have not had time to work yet)
3. Add an aminoglycoside
4. Add a fluoroquinolone
Case #5 Continued

- Blood cultures: *Pseudomonas* susceptible to all Abx except cipro/levo.
- Pressor requirement is downtrending.

What Would You Do With Her ABx Now?

1. Continue “double coverage”
2. Change to beta-lactam monotherapy
“Double-Covering” GNRs

- Also known as “combination therapy”
- Usually refers to a beta-lactam + (aminoglycoside or fluoroquinolone)
- Caveats to Combination Therapy Data:
 - Often observational, non-blinded studies
 - Empiric vs definitive therapy not always defined
 - Different beta-lactams, different combinations, old ABx

3 Reasons To Consider Combination Rx

1. Increase the probability of appropriate empiric coverage by expanding the spectrum of activity
2. Synergy between 2 active antibiotics
3. Prevent the development of resistance
Reason #1: Empiric Combination Therapy

- ↑mortality if inappropriate empiric Abx for GNR bacteremia
- Using empiric combination therapy will increase the likelihood of having at least one active antibiotic

When to empirically “double cover” for GNRs?

- Patient is critically ill
- Patient is at high risk for MDR pathogens
- How to choose between fluorquinolone (FQ) and aminoglycoside (AG)?
 - Know your local antibiogram: how good is the beta lactam? What is the benefit of adding a FQ vs AG?
 - Balance risk of nephrotoxicity from AG with risk of inappropriate coverage
 - Has the patient been on recent FQ?

Example: UCSF Pseudomonas Antibiogram

<table>
<thead>
<tr>
<th></th>
<th>MER -></th>
<th>PIPTAZ -></th>
<th>CFPM -></th>
<th>MER -></th>
<th>PIPTAZ -></th>
<th>CFPM -></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MER+TOB</td>
<td>PIPTAZ+TOB</td>
<td>CFPM+TOB</td>
<td>MER+CIP</td>
<td>PIPTAZ+CIP</td>
<td>CFPM+CIP</td>
</tr>
<tr>
<td>All Patients</td>
<td>79% → 97%</td>
<td>75% → 97%</td>
<td>89% → 97%</td>
<td>79% → 91%</td>
<td>75% → 97%</td>
<td>86% → 97%</td>
</tr>
<tr>
<td>ICU</td>
<td>77% → 93%</td>
<td>71% → 93%</td>
<td>81% → 93%</td>
<td>77% → 82%</td>
<td>71% → 82%</td>
<td>81% → 84%</td>
</tr>
<tr>
<td>Floor</td>
<td>81% → 97%</td>
<td>76% → 98%</td>
<td>90% → 99%</td>
<td>81% → 90%</td>
<td>83% → 91%</td>
<td>90% → 91%</td>
</tr>
</tbody>
</table>
Reason #2: Combination Rx for Synergy?

- *In vitro* and animal studies
 - Best data is for beta-lactam plus aminoglycoside
 - Data for beta-lactam plus fluoroquinolone more sporadic

- Does this translate into clinical benefit?
 - **NO mortality benefit** based on recent observational data and meta-analyses

What About in Certain Subgroups?

- Older studies from the 1980s/1990s showed benefit of combination Rx in septic shock, neutropenia, *Pseudomonas*

- Issues with older studies:
 - Monotherapy arm was often with an aminoglycoside
 - Older beta-lactams used, some without anti-*Pseudomonal* activity

- Newer observational data/meta-analyses show no benefit of definitive combination therapy for:
 - Septic shock
 - *Pseudomonas*
 - Neutropenia (although less data)

Reason #3: Combination Rx to Prevent Resistance?

- Combination therapy may prevent development of resistance *in vitro*

- But in clinical practice, no evidence that combination therapy prevents the development of resistance

Combination Rx for GNRs: Take Home Points

- Consider empiric combination therapy in critically ill patients who are at risk of having MDR organisms

- The goal of “double-covering” for GNRs is to ensure an appropriate Abx is included in the initial empiric regimen

- Once susceptibilities are known, narrow to monotherapy

- There is no evidence that definitive combination therapy is “synergistic” *in vivo* or prevents the development of resistance
Thank you!

- Questions?