Zika, chikungunya, dengue and the work-related traveler

Emerging and Re-Emerging Occupational and Environmental Exposure and Disease and Updates in Occupational and Environmental Medicine

George W. Rutherford, MD, AM, FAAP, FACPM
Institute for Global Health Sciences
University of California, San Francisco

Disclosures

• I have nothing to disclose

Arboviral diseases and the traveler

• Arboviruses are RNA viruses that are transmitted to humans and other species primarily through the bites of infected mosquitoes, ticks, sand flies and midges
 • Arbovirus is a general term and reflects transmission routes rather than taxonomy
 • Can also be transmitted through blood transfusion, organ transplantation, perinatally (including through breastfeeding), sexually and through laboratory accidents
• Endemic in most of the tropical and subtropical world, including the United States and California
Arboviral diseases of public health significance

- More than 130 are known to cause human disease
- Most belong to four families:
 - Flaviviridae
 - Togaviridae
 - Bunyaviridae
 - Rhabdoviridae
- Arboviral infections can range from asymptomatic to acute febrile rash illness to encephalopathy and death
- Divided into two forms:
 - Neuroinvasive
 - Non-neuroinvasive
- California serogroup viruses
 - Chikungunya
 - Dengue virus
 - Eastern equine encephalitis
 - Japanese encephalitis
 - Powassan virus
 - St. Louis encephalitis
 - West Nile virus
 - Western equine encephalitis
 - Yellow fever
 - Zika virus

Zika Virus a Global Health Emergency, W.H.O. Says

Short Answers to Hard Questions About Zika Virus

Epidemiology of Zika virus

- Discovered in 1947 in a rhesus monkey at the Uganda Virus Research Institute as part of studies of sylvatic yellow fever
- The first human cases were reported in Nigeria in 1968
- Before 2007, ZIKV was known to exist as a mild viral illness of humans in a broad band from West Africa across South and Southeast Asia to the Philippines and Indonesia corresponding to the Old World distribution of Aedes spp
Epidemiology of Zika virus infection, 1947-2007

![Map of Zika virus transmission](image)

Flaviviridae family

- Flavivirus
 - West Nile virus
 - Japanese encephalitis virus
 - St. Louis encephalitis virus
 - Dengue virus
 - Yellow fever
 - Zika virus
 - Tick-borne encephalitis virus

- Hepacivirus
 - Hepatitis C virus

- Pegivirus
 - GBV-C (hepatitis G)

- Pestivirus
 - Hog cholera

Zika virus transmission

- Single-stranded RNA virus
- Primarily mosquito-borne
 - *Aedes aegypti*, *Ae. africanus*, *Ae. apicoargenteus*, *Ae. vitattus*, *Ae. furcifer*, *Ae. polynesiensis*
- From infected mother to her fetus
- Blood transfusion
- Sexual transmission

Figure 1. Map of Zika virus transmission in countries with evidence of Zika virus infection in humans prior to 1 April 2016.

Aedes aegypti

- Zika and dengue transmitted by infected female mosquito
- Primarily a daytime feeder
 - *Therefore, bed nets provide no protection*
- Lives in and around human habitation
- Lays eggs and produces larvae preferentially in artificial containers

Aedes aegypti breeding sites

Distribution of Ae. aegypti

[Map showing distribution of Ae. aegypti]
Zika virus clinical manifestations

• 80 percent of infections are asymptomatic
• When symptomatic, generally mild
 • Fever
 • Rash
 • Arthralgia
 • Conjunctivitis
• Lasts several days to a week
• No specific treatment, avoid aspirin in children
• No NSAIDs until dengue is ruled out to avoid hemorrhagic complications

Table 1. Clinical Characteristics of 31 Patients with Confirmed Zika Virus Disease on Yap Island during the Period from April through July 2007.

<table>
<thead>
<tr>
<th>Sign or Symptom</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maculopapular rash</td>
<td>28 (90)</td>
</tr>
<tr>
<td>Fever*</td>
<td>20 (65)</td>
</tr>
<tr>
<td>Arthritis or arthralgia</td>
<td>20 (65)</td>
</tr>
<tr>
<td>Nonpurulent conjunctivitis</td>
<td>17 (55)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>15 (48)</td>
</tr>
<tr>
<td>Headache</td>
<td>14 (45)</td>
</tr>
<tr>
<td>Retro-orbital pain</td>
<td>12 (39)</td>
</tr>
<tr>
<td>Edema</td>
<td>6 (19)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3 (10)</td>
</tr>
</tbody>
</table>

* Cases of measured and subjective fever are included.

Clinical Manifestations of ZIKV

Images courtesy of Dr. Sáfadi, FCM da Santa Casa de São Paulo

Recent epidemiology of Zika

• The first cases outside of Africa and Asia were described in an outbreak on Yap Island in the Marianas in 2007
• ZIKV spread across the Pacific and reached Easter Island in 2014
• Continuing outbreaks in the Pacific (New Caledonia and American Samoa)
• First cases in Brazil in May 2015
• Spread across almost all of Latin America and the Caribbean including southern Florida, following the range of Aedes
• WHO declared a "Public Health Emergency of International Concern" on 1 February 2016
 • Ended 18 November 2016 as containment moved to longer-term strategy
Comparison of Zika virus outbreaks in Yap, French Polynesia and Brazil

<table>
<thead>
<tr>
<th></th>
<th>Yap World/Polynesia</th>
<th>French Polynesia</th>
<th>Brazil (Maricá and Macaé)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>20k</td>
<td>300k</td>
<td>248,604,000</td>
</tr>
<tr>
<td>Confluent cases</td>
<td>45</td>
<td>106</td>
<td>107</td>
</tr>
<tr>
<td>Estimated attack (% of population)</td>
<td>5% (5%)</td>
<td>30% (30%)</td>
<td>30% (30%)</td>
</tr>
<tr>
<td>Clinical findings</td>
<td>Rash, fever, arthritis, conjunctivitis</td>
<td>Rash, fever, arthritis, conjunctivitis</td>
<td>Rash, fever, arthritis, conjunctivitis</td>
</tr>
<tr>
<td>Lab confirmation</td>
<td>2</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>

Reported complications of Zika virus infection

- Microcephaly
- Guillain-Barré syndrome
- Thrombocytopenic purpura
- Leukopenia

In French Polynesian outbreak in 2013, of 10,000 registered cases, there were 70 (0.7%) severe cases.
Zika virus in pregnancy

- 88 pregnant Brazilian women with new rash of ≤5 days
- 72 positive for ZIKV, 16 negative
- Fetal ultrasonography in 42 ZIKV+ and all ZIKV-
 - 12/42 v 0/16 fetal abnormalities
- Adverse findings
 - 2 fetal deaths (36, 38 wks)
 - 5 IUGR with or without microcephaly
 - 7 ventricular calcifications or other CNS lesions
 - 7 oligohydramnios or decreased umbilical artery flow

Microcephaly

- Abnormally small cranial vault secondary to abnormal brain growth
- Clinical manifestations
 - Seizures, developmental delay, intellectual disability, problems with movement and balance, dysphagia, hearing and vision loss
- Incidence 2-12/10,000 live births in the U.S.
- Causes
 - Infection (rubella, toxoplasmosis, cytomegalovirus)
 - Severe malnutrition
 - Toxic exposures (e.g., alcohol)

Congenital Zika syndrome

1. Severe microcephaly (>3 SD below mean)
 - Fetal brain disruption syndrome
2. Brain anomalies
 - Subcortical calcifications
3. Ocular anomalies
4. Congenital contractions
 - Arthrogryposis
5. Marked early hypotonia and signs of extrapyramidal involvement

Two theories on the genesis of Zika-associated microcephaly and Guillain-Barré syndrome

• Genetic change with greater neurotropism and greater potential for epidemic spread

• Insufficient power in earlier reports to detect rare statistical events

ZIKV phylogeny of African-Asian/Pacific and Latin American virus isolates, including mapping of amino acid substitutions

Sexual transmission

- 33 U.S. cases of male-to-female transmission as of 26 October 2016
 - Intercourse few days before onset of symptoms
 - In 2 cases, men were asymptomatic
 - 1 case of female-male transmission
 - 5 cases of replication-competent Zika virus isolated from semen 69 days after illness onset (persisted longer than in blood)
 - CDC recommends abstinence or condoms for men who may have been exposed and their pregnant sexual partners
 - Unknowns:
 - Duration of carriage of replication-competent ZIKV in semen, blood

Additional preventive measures for Zika virus infection

- Avoid areas with active transmission
- Avoid or postpone pregnancy in living in an endemic area (five countries)
- Condoms if potential for sexual exposure
- Immunization
 - Three strategies being pursued at NIAID:
 - DNA vaccine (strategy similar to WNV vaccine)
 - Attenuated live virus vaccine (similar to dengue vaccine)
 - Genetically engineered VSV (similar to Ebola vaccine)
- Natural infection to achieve immunity before becoming pregnant
- As far as we know, immunity following infection is life long
- Herd immunity (some evidence from Polynesia)
 - This might happen in some Caribbean islands

Chikungunya virus
Chikungunya virus

- Mosquito-borne viral disease characterized by acute onset of fever with severe arthralgias
- Single-stranded RNA virus
- Member of the Togaviridae family and the Alphavirus genus
 - Togaviridae also contain rubella virus
 - Alphaviruses included eastern equine encephalitis, Venezuelan encephalitis and western equine encephalitis
 - Chikungunya is part of the Semliki Forest virus complex
- First isolated in Tanganyika in 1953

Chikungunya epidemiology

- Distribution follows habitat of Ae. aegypti and Ae. albopictus
- Occurs in large outbreaks with high attack rates
 - Large outbreak in the Indian Ocean basin in 2005-2008
 - 1.4 million cases in India alone
 - Hundreds of cases imported to Europe and North America
 - Autochthonous transmission in Italy with 292 cases
 - More recent outbreaks in the Americas
 - First case in December 2013 in Saint Martin
 - 1.5 M cases by June 2015
 - 185 000 reported in 2017

Countries with reported local transmission of chikungunya virus
Chikungunya virus transmission

- Transmitted by *Aedes aegypti* and *Ae. Albopictus*
- Yes, this is the same vector as Zika virus (and, as we’ll see for dengue virus)
- Mosquito feeds in the *daytime*
- Other means of transmission
 - Intrapartum (in utero transmission results in spontaneous abortion)
 - Parenteral (blood transfusion, organ transplantation, needlestick injuries)
 - No evidence of breastmilk transmission
Chikungunya virus clinical symptoms

- Majority (72%–97%) of infected people symptomatic
- Incubation period usually 3–7 days (range 1–12 days)
- Primary clinical symptoms are fever >39º and polyarthralgia
- Arthralgia usually bilateral and symmetric
- Pain can be severe and debilitating
- Other symptoms
 - Headache, myalgia, arthritis, conjunctivitis, nausea/vomiting, or maculopapular rash
- Deaths are rare (consider dengue)

Chikungunya virus clinical course

- Symptoms usually resolve within 7–10 days
- Rare complications can include uveitis, retinitis, myocarditis, hepatitis, nephritis, bullous skin lesions, hemorrhage, meningoencephalitis, myelitis, Guillain-Barré syndrome, and cranial nerve palsies
- Relapsing polyarthralgia, polyarthritis, tenosynovitis (12%)

Dengue, dengue hemorrhagic fever and dengue shock syndrome
Dengue virus

- Single-stranded RNA flavivirus
- Has 4 serotypes (DEN-1, 2, 3, 4)
- Transmitted primarily by *Aedes aegypti* and *Ae. albopictus*
- Can also be transmitted by blood transfusion or organ transplantation
- Each serotype provides specific lifetime immunity, and short-term cross-immunity
- All serotypes can cause severe and fatal disease
 - Dengue fever
 - Dengue hemorrhagic fever
- Some genetic variants within each serotype appear to be more virulent or have greater epidemic potential

Epidemiology of dengue virus

- Endemic in most of the tropical and sub-tropical world
- Can occur in epidemics during peak mosquito breeding seasons
- Probably originated in Africa and Southeast Asia and emerged after World War II
- WHO estimates 50-100 million cases per year with 500,000 cases of DHF and 22,000 deaths (in children primarily)

Burden of dengue virus by continent, 2010

<table>
<thead>
<tr>
<th>Continent</th>
<th>Dengue fever (millions)</th>
<th>Asymptomatic and mildly symptomatic infections (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>15.7</td>
<td>48.4</td>
</tr>
<tr>
<td>Asia</td>
<td>66.8</td>
<td>204.4</td>
</tr>
<tr>
<td>Americas</td>
<td>13.3</td>
<td>40.5</td>
</tr>
<tr>
<td>Oceania</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Global</td>
<td>96</td>
<td>293.9</td>
</tr>
</tbody>
</table>

Dengue and dengue hemorrhagic fever in the Americas, 1980-2007

Since 2014, 6,319,395 cases have been reported from 49 countries in the Americas
- Brazil: 3,989,289
- Columbia: 326,546
- Mexico: 549,208
- Nicaragua: 237,768

Clinical manifestations
- Acute febrile illness – varies in severity over a 5 to 7-day period
- Symptoms appear 2 to 7 days after being bitten
- Characterized by fever with ≥2 other symptoms:
 - Headache and retro-orbital pain
 - Arthralgia
 - Myalgia
 - Rash
 - Mild bleeding (nose or gums)
 - Neutropenia
- Infection with one subtype of dengue virus confers lifelong immunity against that subtype only
- May be partial or temporary cross-immunity to other serotypes but...
- Risk of severe complications increase with infection with other serotypes
- Dengue fever can progress to dengue hemorrhagic fever
- Pathophysiology is plasma leak with thrombocytopenia

Warning signs that may occur at or after onset of illness:
- Persistent vomiting
- Clinical shock (accompanied by hypotension or syncopal event)
- Hemothorax/pleural effusion
- Liver or renal failure
- Convulsions
- Increased intracranial pressure with rapid decrease in platelet count
Clinical manifestations
• Dengue hemorrhagic fever
 • Follows three phases: febrile phase, critical (plasma leak) phase and convalescent (reabsorption) phase
 • Treatment is supportive and designed to avoid hypovolemic shock
• Critical phase occurs at defervesence and lasts 24-48 hours
• Gradual recovery with reabsorption of extravasated fluids
• Can proceed to frank hypovolemic shock and massive gastrointestinal hemorrhage (dengue shock syndrome)
• Treated DHF has case fatality rate of 2-5%, untreated 50%

Prevention of Zika, Chikungunya and dengue virus infections in travelers
• Understand risk of exposure: https://wwwnc.cdc.gov/travel/
• Primary strategy is avoidance of Aedes spp. bites
 • No travel in some cases (e.g., pregnancy)
 • Long-sleeved shirts and pants
 • Permethrin-treated clothing
• Because Aedes spp. bite during the day, sleeping under bed nets is ineffective
• Mosquito repellants
• Other measures
 • Stay in places with air conditioning or window screens
 • If staying long term, clean up environmental water around houses and control mosquitoes in and around housing
• Dengvaxia (CYD-TDV, Sanofi Pasteur) registered in Mexico in 2015 — live recombinant tetravalent dengue vaccine given as a 3-dose series (0/6/12 months)
• Only for use in endemic countries, not yet approved for travelers in the United States

Distribution of *Ae. aegypti*
Mosquito repellents

DEET, picaridin and IR 3535 are safe to use during pregnancy
* EPA search tool for commercially available repellents: https://www.epa.gov/insect‐repellents/find‐repellent‐right‐you

Conclusions

• These three arboviral infections are very common in the tropical and subtropical world
• They are co-circulating in Latin America and the Caribbean
• Infection in travelers is common in U.S. travelers
 • 425 cases of Zika virus in 2017
 • 951 cases of dengue virus in 2015
 • 905 cases of imported Chikungunya
• Primary strategy is avoiding Aedes bites

MOC Questions

• Which of the following is not recommended for preventing Zika, Chikungunya and dengue virus infection in travelers to endemic areas:
 A. Sleeping under insecticide-treated bed nets
 B. DEET
 C. Picardin
 D. Staying in accommodations with window screens or air conditioning

• Which of the following is not a warning sign of possible dengue hemorrhagic fever following defervescence from dengue fever:
 A. Abdominal pain or tenderness
 B. Ascites
 C. Mucosal bleeding
 D. Disorientation

• Which of the following is not a reported complication of Zika virus infection:
 A. Microcephaly
 B. Severe chorioretinopathy and polyneuritis
 C. Guillain–Barré syndrome
 D. Conjunctivitis