How to Approach the Patient with CRT and Recurrent Heart Failure

Byron K. Lee MD
Associate Professor of Medicine
Electrophysiology and Arrhythmia Section
UCSF

Update in Electrocardiography and Arrhythmias
October 2010
Response to CRT

- CRT proven to decrease morbidity and mortality
- Some patients derive little to no benefit from CRT
- These so-called “non-responders” are hard to predict in advance
- Between those who respond to CRT and those who don’t are many patients who have suboptimal response to CRT
- Challenges:
 - Converting non-responders to responders
 - Optimizing response

CRT Optimization

- Device programming so a non-responder or suboptimal responder will derive more benefit from CRT
- Two main device-based approaches
 - Promoting CRT
 - Optimizing timing
 - AV timing
 - VV timing
Promoting CRT
● Unlike conventional pacing, CRT should pace the heart as close to 100% of the time as possible
● To check on continuous CRT pacing
 ○ Use diagnostics to verify how much ventricular pacing is going on
 ○ Program key parameters to encourage maximum CRT pacing
 ○ Use advanced features to increase CRT pacing

Encouraging CRT: MTR
● The Maximum Tracking Rate sets the highest rate at which the ventricles will be paced in response to intrinsic atrial activity
● If the patient has very high intrinsic atrial rates (>MTR) with good conduction, it is possible that the ventricle will not be paced some of the time
● Make sure the MTR is high enough
 ○ Requires clinical judgment to avoid pacing at rates too high for the patient to tolerate
 ○ Atrial tachyarrhythmias can be problematic

Encouraging CRT: AV Delay
● The AV delay is the time between the atrial beat and the corresponding ventricular paced event
● A long AV delay gives the ventricle a lot of “opportunity” to beat on its own before the ventricular output pulse is delivered
● Shorten the AV delay as much as is reasonable
 ○ Paced AV delay
 ○ Sensed AV delay
Encouraging CRT: RRAVD
- Rate-responsive AV delay (RRAVD) is the automatic shortening of the AV delay as the patient’s heart rate increases
- This keeps the AV delay short even during periods of rapid activity
- Program this ON for CRT patients

Encouraging CRT: Negative AV Hysteresis
- Conventional hysteresis encourages intrinsic activity and is incompatible with CRT
- However, negative AV hysteresis automatically shortens the AV delay whenever an intrinsic ventricular event is sensed
- This is the “opposite” of conventional hysteresis and works to discourage intrinsic ventricular activity
- Program this ON

Negative AV Hysteresis

![ECG Diagram](image)
Advantages to Negative AV Hysteresis

- Use of Negative AV Hysteresis will likely permit the clinician to program “normal” AV delays
 ▪ Shorter AV delays can negatively affect ventricular filling
- The AV delay is automatically shortened by a programmable delta value when ventricular activity is sensed

Encouraging CRT: MS

- Mode Switching helps patients prone to high-rate intrinsic atrial activity
- Works by turning off atrial tracking during high-rate intrinsic atrial episodes
- Key in CRT: Program AMS base rate high enough to maintain ventricular pacing

Timing Optimization

- The theory being timing optimization is that proper CRT depends on precise timing of the AV and VV contractions
- Timing must allow for
 ▪ AV delay
 ▪ Adequate time for the passive filling of the ventricles
 ▪ Adequate time for the atrial contraction
 ▪ But not so much time that intrinsic conduction occurs
 ▪ VV timing
 ▪ Proper contraction of the right and left ventricles with respect to each other
Considerations for Timing Optimization

- Baseline dyssynchrony
 - What type of dyssynchrony does the patient have?
 - What is the latest moving ventricular segment?
 - How late is that ventricular segment?

The Most Delayed Site and Pacing Site (S.V. ECHO Evaluation)

Considerations for Timing Optimization

- LV lead position
 - Mid-left lateral position may offer better hemodynamics than anterior placement
 - However, LV lead placement depends greatly on the patient’s anatomy (sometimes the “ideal” position is not possible)
Echo Optimization

- Echocardiography is considered the "gold standard" of timing optimization
- Mitral velocity Doppler echo is used for AV timing optimization
 - Sensed and paced AV delays
- Aortic velocity time integral (VTI) echo is used for VV timing
 - RV and LV synchronization

Goals of AV Optimization

- Allow adequate time for passive filling of the ventricles
 - Atrial diastole
- Allow adequate time for a complete atrial contraction
 - Atrial systole
- Allow for ventricular contraction
 - Ventricular systole
- When AV timing is too short
 - Ventricular filling time may be cut short
 - The atrial kick can be cut short
 - Hemodynamics can be impaired
- When AV timing is too long,
 - Intrinsic ventricular activity can break through
Echo Velocity Doppler Waveform

Mitral Velocity Doppler Echo

Echo for CRT Optimization
Optimization of AV Timing with MVDE
- Measure the intrinsic PR interval and program the AV delay to a shorter value
- Using mitral velocity Doppler echo (MVDE), record and observe the E and A waves
- Shorten the AV delay in steps of 20 ms until you see A waves being cut off—the AV delay is too short
- Now step up the AV delay in 10 ms steps until you see E and A waves with no merging of the E and A waves
- That point is the optimized AV delay

Sensed vs. Paced AV Delay Timing
- Sensed AV delay is from AS to VP
- Paced AV delay is from AP to VP
- There is about a 25 ms difference in sensing relative to the start of atrial depolarization
- Program a sensed AV delay that is about 25 ms shorter than the paced AV delay

AV Delays with CRT Stimulation
- Patient has a good underlying atrial rhythm, optimize the sensed AV delay
 - The patient will likely spend most time in atrial tracking
- Patient requires a lot of atrial pacing, optimize the paced AV delay
 - The patient will mostly be paced in the atrium
- Patients that fall somewhere in-between
 - Optimize both sensed and paced AV delays
VV Timing Optimization
- VV timing refers to the synchronization of RV and LV contractions
- Programmable VV timing
 - Allows for simultaneous pacing (RV and LV together)
 - Allows for an offset (one ventricle before the other)
- The goal of VV timing optimization is to get the ventricles to contract as a unified whole

Programming VV Timing Optimization
Aortic Velocity Time Integral (VTI) Echo

- Measure speed of blood flow past the aortic valve during systole
- Aortic VTI is proportional to cardiac output (CO)
- Adjust the VV timing until you find the greatest possible VTI value

Using VTI Doppler Echo for VV Timing

- After optimizing the sensed and paced AV delays
- Measure the VTI while adjusting the interventricular settings
 - Do LV first and measure VTI values for 20, 40, 60 and 80 ms
 - Record the offset value that produces the greatest VTI value
- Repeat with the RV first
- Optimal VV timing delay is the one that produces the greatest VTI value
Programming QuickOpt™

QuickOpt™ Recommended Values

QuickOpt™ Optimization

QuickOpt™ optimization is clinically-proven to correlate with echo based methods:

- Prospective 11-patient pilot study\(^1\)
 - 99.2% correlation
- Retrospective 61-patient study\(^1\)
 - 97.6% correlation
- Prospective multi-center IDE clinical trial\(^2\)
 - 96.1% correlation for Sensed AV (PV) delay\(^2\)
 - 97.5% correlation for Paced AV delay\(^2\)
 - 96.6% correlation for VV Delay\(^2\)

VV Optimization Studies

Sequential vs. Simultaneous BiV Pacing:

- Results are mixed for VV delay optimization\(^1\)
- Optimizing VV delay appears to marginally improve hemodynamics\(^1\):
 - CO, SV, EF, filling time, synchrony, MR, etc.
- Important limitations of VV optimization\(^2\):
 - No additional clinical benefit shown (NYHA, QOL, 6-minute walk test)
 - Nobody has turned a ‘non-responder’ into a ‘responder’

\(^1\) Sogaard P et al. Circulation 2002; 106:2078-2084
\(^2\) van Gelder BM et al. Am J Cardiol 2004; 93:1500-1503
\(^3\) Hay I et al. Circulation 2004; 110:3404-3410
\(^4\) Bordachar P et al. Am J Cardiol 2006; 97:1622-1625
\(^5\) Mortensen PT et al. PACE 2004; 27:339-345
\(^6\) Boriani G et al. Am Heart J 2006; 151:1050-1058
\(^7\) Leon AR et al. JACC 2005; 46:2248-2304

Timing Cycle Optimization – Essential

Optimal Delays Change Acutely...and Often\(^1,2\)

- 63 pts, EF < 35%
- NYHA ≥ II, QRS > 150 ms
- LV lead in lateral or posterior-lateral vein

Results:
- Only 3 pts unchanged
- 18 pts needed adjustments at each FU
- VV 73 times in 27 pts
- AV 43 times in 21 pts

Future: Electronic Repositioning
Future: Exercise Optimization

Future: Optimization Centers

27 yo M with IDCM
- On transplant list
- Medicines optimized
- EF 17%
- NYHA III
- QRS 166 ms
- RBBB morphology
- NSVT up to 8 beats
27 yo M with IDCM
- Felt worse immediately after implant
- Complained of heart thumping
- Outputs minimized
- Device optimized
- Still felt worse
27 yo M with IDCM

- In clinic
 - Knew when pacing was ON and pacing was OFF
 - Unequivocally felt worse with pacing ON
 - Pacing was ultimately turned OFF
- Got heart transplant a few months later

Conclusions

- Not all HF patients will respond to CRT
- Maximize pacing to derive maximal benefit
- Timing optimization may play a key role in improving response
 - AV timing optimization-Mitral valve Doppler
 - VV timing optimization-Aortic VTI
- Echocardiography is considered the “gold standard” for timing optimization but is a time-consuming procedure
- Device based algorithms can quickly deliver optimization settings that correspond closely to echo results
- Optimization hasn’t been proven to improve outcomes
- Future:
 - Optimize more often
 - Optimize in more ways
Encouraging CRT: RRPVARP

- Rate-responsive PVARP (RRPVARP) automatically shortens the PVARP as the heart rate increases
- This has nothing to do with the accelerometer
- RRPVARP is automatic
- Program it ON

QuickOpt™ Algorithm

- Simple, device-based algorithm
- Works with the intracardiac EGM
- Allows for timing optimization in follow-up sessions
- Studies show that results from QuickOpt correlate extremely closely to results obtained from echocardiographic methods
- Quick, painless, noninvasive, easy

QuickOpt™ in Action: LV Pace
QuickOpt™ in Action: A Pace

QuickOpt™ in Action: V Sense

QuickOpt™ in Action: RV Pace
QuickOpt™ in Clinical Practice
- Recommended for use at every follow-up session
 - Regular optimization assures better CRT function
 - Optimal timing cycle changes frequently

How Important is Timing Optimization?
- AV and VV timing optimization were shown to improve LVEF scores