VSI CyberKnife: Technical Specifications & Capabilities

Martina Descovich

UCSF RADIATION ONCOLOGY UPDATE: PERSPECTIVE ON NEW TECHNOLOGIES, CLINICAL FINDINGS AND SAFETY

April 1, 2011

Outline
- The CyberKnife VSI System
- Advances in CyberKnife technology
- The concept of Robotic IMRT (R-IMRT)
- New developments for R-IMRT
- Sequential Optimization
- Iris Variable Aperture Collimator
- Patient specific Quality Assurance

CyberKnife VSI System
- CK Software 9.0, Multiplan 4.0 (upgradable from previous version)
- 1000 MU/min, 6MV X-band linac
- Iris Variable Aperture Collimator
- Xchange Robotic Collimator Changer
- Synchrony Respiratory Tracking System
- Xsight Spine & Lung Tracking System
- InTempo Adaptive Imaging System
- Monte Carlo Dose Calculation
- Sequential Optimization
- AutoSegmentation
- QuickPlan

VSI versus G3
- Linac: 1000 MU/min
- Detectors mounted at 45°
- Iris collimator only
- Manual change of cones
- Upgraded 8.5/3.5 → 9.0/4.0
- Linac: 400 MU/min
- Detectors mounted at 45°
- Fixed collimator only
- Manual change of cones
- Software version 9.0/4.0
Installation at UCSF

- Site construction
- Delivery
- First patient
- Shielding
- Commissioning

Advances in CK Technology

<table>
<thead>
<tr>
<th>CK in 1999</th>
<th>VSI in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking methods</td>
<td></td>
</tr>
<tr>
<td>3D Skull tracking</td>
<td>6D Skull tracking</td>
</tr>
<tr>
<td>Spine tracking</td>
<td>Spine tracking</td>
</tr>
<tr>
<td>Fiducial marker tracking</td>
<td>Fiducial marker tracking</td>
</tr>
<tr>
<td>Lung tumor tracking</td>
<td>Lung tumor tracking</td>
</tr>
<tr>
<td>Synchrony MTS</td>
<td>Synchrony MTS</td>
</tr>
<tr>
<td>Manipulator precision</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Targeting accuracy (static)</td>
<td>0.6 mm – 2.5 mm</td>
</tr>
<tr>
<td>Targeting accuracy (motion)</td>
<td>n/a</td>
</tr>
<tr>
<td>Beam Collimation</td>
<td>Fixed cones</td>
</tr>
<tr>
<td>Dose-rate</td>
<td>300 MU/min</td>
</tr>
<tr>
<td></td>
<td>Iris and Fixed</td>
</tr>
<tr>
<td></td>
<td>1000 MU/min</td>
</tr>
<tr>
<td>Image detectors</td>
<td>Gadolinium (1.25 mm)</td>
</tr>
<tr>
<td></td>
<td>Amorphous silicon (0.4 mm)</td>
</tr>
<tr>
<td>Dose calculation algorithm</td>
<td>Ray Tracing</td>
</tr>
<tr>
<td></td>
<td>Monte-Carlo & Ray Tracing</td>
</tr>
<tr>
<td>Robot path traversal</td>
<td>Through all nodes</td>
</tr>
<tr>
<td>Patient positioning system</td>
<td>Manual couch</td>
</tr>
<tr>
<td></td>
<td>5-DOF standard couch</td>
</tr>
<tr>
<td></td>
<td>6-DOF & 7-DOF RoboCouch</td>
</tr>
</tbody>
</table>

Clinical Applications

- 1999: SRS
 - Brain
 - Upper spine
 - Skull
 - Fiducial
 - XST

- 2001: SRS
 - Spine

- 2003: SBRT
 - Prostate
 - Lung
 - Pancreas

- 2006: SBRT
 - Spine
 - H&N

- 2007: R-IMRT
 - Spine
 - H&N
 - Lung
 - Liver

- 2010: R-IMRT
 - Standard fractions

- Total patients treated
 - 1999: 30
 - 2000+: >90,000

Robotic IMRT

Robotic IMRT is the delivery of treatments with the CyberKnife using conventional fractionation regimens and radiosurgery precision.

- Like IMRT each field has optimized size, direction and weight.
- Like SBRT, each field is delivered with radiosurgical precision thanks to image guidance during treatment delivery and manipulator corrections.

Clinical applications:

- Well delineated target, for which the accepted fractionation scheme is greater than 5 fractions (i.e. prostate)
- Treatments for which hypo-fractionation would result in high toxicity (head & neck, intracranial lesions, recurrence)
Clinical Example

- Infindibular hemangioblastoma
- 54 Gy in 30 fractions to 85%
- Critical structures: optic chiasm, pituitary, hypothalamus, brain stem
- 80 Beams, 5 mm fixed collimator
- Treatment time: 18 minutes

R-IMRT: Prostate

- R-IMRT uses fewer beams than SBRT, resulting in faster treatment.
- R-IMRT uses more beams than conventional linac-based IMRT, resulting in steeper dose gradient and more conformal dose distribution.

Prostate boost

- Prostate SBRT plan
 - 200-300 beams
 - 2 Gy x 9 fx to 92%
 - 7 beams
 - 15 minutes
 - Rectum $V_{120Gy}=11\%$
 - Bladder $V_{120Gy}=20\%$

- Prostate R-IMRT plan
 - <100 beams

Prostate SBRT

- Comparison: nine prostate patients treated at 9.5 Gy/fraction

<table>
<thead>
<tr>
<th></th>
<th>G3</th>
<th>VSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU/fraction</td>
<td>17158</td>
<td>15538</td>
</tr>
<tr>
<td>Time</td>
<td>86 min</td>
<td>53 min</td>
</tr>
<tr>
<td>Rx IDL</td>
<td>68%</td>
<td>68%</td>
</tr>
<tr>
<td>Beams</td>
<td>207</td>
<td>257</td>
</tr>
<tr>
<td>PTV coverage</td>
<td>97.4%</td>
<td>95.6%</td>
</tr>
<tr>
<td>PTV nCI</td>
<td>1.19</td>
<td>1.16</td>
</tr>
<tr>
<td>Bladder V75</td>
<td>2.3 cc</td>
<td>1.7 cc</td>
</tr>
<tr>
<td>Bladder D$_{max}$/fx</td>
<td>9.4 Gy</td>
<td>9.4 Gy</td>
</tr>
<tr>
<td>Rectum V75</td>
<td>1.7 cc</td>
<td>2.1 cc</td>
</tr>
<tr>
<td>Rectum D$_{max}$/fx</td>
<td>9.3 Gy</td>
<td>9.6 Gy</td>
</tr>
<tr>
<td>Urethra V120</td>
<td>0.2%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Urethra D$_{max}$/fx</td>
<td>11.3 Gy</td>
<td>11.5 Gy</td>
</tr>
</tbody>
</table>
The capability of CyberKnife to deliver R-IMRT treatments was enhanced by the following developments:

- Sequential Optimization
- Iris Variable Aperture Collimator
- Patient specific QA

These developments also resulted in improved SRS/SBRT treatments.

CyberKnife remains primarily a radiosurgery system.

In conventional optimization algorithms, multiple objectives are grouped in a single cost function. In sequential optimization, each objective (step) is optimized in sequence. The objective and the order of the steps define the clinical priorities.

- **Auto-shells** are tuning structures used to constrain the conformity and the extension of the low-dose region.
- **Beam reduction** removes all beams below a MU threshold and re-optimize the plans with the remaining beams while preserving the plan quality.
- **Time reduction** reduces the number of beams and nodes to achieve the user-defined time goal.

Iris variable aperture collimator

- Plans generated using multiple field size have better quality (conformality, homogeneity, coverage) and lower MU than plans generated using a single field size.
- However, using multiple fixed cones is not practical because it requires multiple paths traversal, and results in prohibitively long treatment time.
- Iris collimator allows to use of multiple field sizes without these limitations.
- The aperture is produced by 2 hexagonal banks of tungsten which produce a 12-sided radiation beam.
- The same twelve field sizes can be obtained: 5, 7.5, 10, 12.5, 15, 20, 25, 30, 35, 40, 50, 60 mm
- The beam characteristics are practically identical to the fixed cones.
Iris Challenges

- Iris mechanical tolerance is 0.2 mm for all field sizes.
- This results in intrinsic uncertainty in output factor, particularly for small fields.
- It is not recommended to use the 5 and 7.5 mm field sizes.
- Use the 10 mm only after careful assessment.
- Iris requires more commissioning measurements to characterize off center ratio, including at least 4 diagonals beam profiles.
- Iris requires more QA measurements, particularly to verify the reproducibility of field sizes.
- It requires more maintenance and calibration.
- Iris increased the overall machine “down time”
- Common Iris problems are due to excessive friction between segments, failure of the driving motors and failure of the temperature sensor.
- Iris has been completely redesigned, and Iris2 has been announced.

Iris QA

- IrisQA is a tool provided by Accuray to verify the reproducibility of Iris field sizes with an accuracy of 0.2 mm.
- Gafchromic EBT2 films are irradiated at standard SAD.
- Iris aperture is measured as equivalent diameter of OD threshold.

Patient specific QA

- The debate on patient specific QA for the CyberKnife is ongoing.
- There are currently no regulations enforcing it, nor reimbursement.
- About 15% of Centers perform some sort of patient specific QA.
- There are valid arguments both in support and against the need to perform patient specific QA.
 - Complex procedure – multiple/non-coplanar beams
 - High dose/hypo-fractionated procedure
 - Not “intensity-modulation” per se (for fixed collimator)
 - Stand alone system
 - Machine specific QA and E2E tests are sufficient to ensure optimal machine operation and patient safety
- Patient specific QA is required for IMRT coding and billing.
- Patient specific QA is imperative for new machines/new techniques.
- We have performed “Delivery QA” (DQA) for every patient so far.

New Plan QA

- Align center of patient’s target with center of phantom’s target.
- Calculate corresponding dose distribution
- Rescale MU ≤700 cGy.
- Deliver plan on phantom Gafchromic EBT2 films
- Axial & sagittal planes.
Film Analysis

- Planned dose
- Film

Dose profile comparison

Statistical analysis

- Points passing (%)
- Patient number

DQA Results

- MapCheck film analysis software
- Gamma Index 3%/3mm
- Absolute dose
- 48 plans
- Average score 97%

- FilmQA analysis software
- Gamma Index 2%/1mm
- Absolute dose
- 8 plans
- Average score 98%

Summary

- The capabilities of the CyberKnife system have significantly expanded over the last decade.
- New developments in CyberKnife technology enable delivery of Robotic-IMRT treatments.
- All development done towards robotic-IMRT results in improved SRS/SBRT treatments.
- While CyberKnife is becoming more versatile, it remains primarily a radiosurgery system.

Acknowledgment

UCSF CyberKnife Team

Mike Lometti
Sebastien Gros
Cynthia Chuang
Lijun Ma
Jean Pouliot
Vernon Cheam
Maria Ho

Alex Gottschalk
Sue Yom
Igor Barani
Penny Sneed
David Larson
Jean Nakamura
Marc Nash

UCSF Comprehensive Cancer Center
San Francisco

I-Chow Hsu
Shannon Fogh
Catherine Park
Mack Roach
Michael McDermott