VTE Prevention: From Filters to Fondaparinux

M. Margaret Knudson MD
U. California, San Francisco

No Current Disclosures

• Prior Support: Glaxo; Kendall; Rhone-Poulenc

CASE PRESENTATION

• 21 year old chef stabbed in the Mission
• Hypotensive on arrival with evisceration
• Massive transfusion; thoracotomy
• “tacos in the field”: stomach repair x 2
• Splenectomy; distal pancreatectomy
• Extubated after just 24 hours
• 3 days later: fever, tachycardia
Case Presentation Continued

• Full-dose anticoagulation with heparin
• Lower GI bleed with drop in Hematocrit
• Transfused; **IVC Filter placed**
• Prophylatic doses of enoxaparin
• Eventually transitioned to Coumadin

Historical Perspectives

“A study of protocols of 9,882 postmortem exams including death from injury...in the traumatic group embolisms were found in 61 cases (3.8%) and in the non-traumatic group in 222 cases (2.6%). Statistically, this appears to be a significant difference.”

J.S. McCartney, 1934

Historical Perspectives

• 124 trauma patients: venograms
• Fracture patients: 35% venous thrombosis
• Thrombus found within 24 hours of injury
• Both injured/uninjured extremity
• 2/3rds with DVT-asymptomatic

Freeark et al, 1967
INCIDENCE: OCCULT DVT

- 349 injured patients: screening venography*
- None receiving prophylaxis
- Proximal DVT rate: 18%
- PE rate: 2% (43% mortality!!)

*Geerts et al, NEJM 1994

Incidence of Occult PE after Trauma

- 90 consecutive patients; ISS > 9
- Asymptomatic; no DVT
- Chest CT: between 3-7 days
- 22 had clot on CT; 4 were major!
- 30% were receiving prophylaxis

Schultz et al J Trauma 2004

THROMBOEMBOLISM AFTER TRAUMA

AN ANALYSIS OF 1602 EPISODES FROM THE ACS NATIONAL TRAUMA DATA BANK

Annals of Surgery 2004

M. Margaret Knudson MD
Danagra G. Ikossi MD
Linda Khaw BA
Diane Marabito RN, MPH
Larisa S. Speetzen BA

The University of California, San Francisco

METHODS

- Data source: NTDB (1994-2001)
- Data analysis:
 - Demographics
 - Nature/severity of injuries
 - Complications/outcomes
- Survey: participating trauma centers
 - VTE risk factors/protocols
RESULTS

- 450,375 patients included
- 84% blunt injuries
- 31% ISS>10
- 998 pts: DVT (0.36%)
- 522 pts: PE (0.13%)
- 82 pts: both DVT/PE
- PE mortality: 18.7%

RISK FACTOR ANALYSIS

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock on admission (BP < 90 mHg)</td>
<td>1.95</td>
</tr>
<tr>
<td>Age ≥ 40 yrs.</td>
<td>2.29</td>
</tr>
<tr>
<td>Head injury (AIS ≥ 3)</td>
<td>2.59</td>
</tr>
<tr>
<td>Pelvic fracture</td>
<td>2.93</td>
</tr>
<tr>
<td>Lower extremity fracture</td>
<td>3.16</td>
</tr>
<tr>
<td>Spinal cord injury with paralysis</td>
<td>3.39</td>
</tr>
</tbody>
</table>

RISK FACTOR ANALYSIS (CONT')

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator days > 3</td>
<td>10.62</td>
</tr>
<tr>
<td>Venous injury</td>
<td>7.93</td>
</tr>
<tr>
<td>Major surgical procedure</td>
<td>4.32</td>
</tr>
</tbody>
</table>

p < .0001 for all factors

MULTIVARIATE ANALYSIS

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator days > 3</td>
<td>8.08</td>
</tr>
<tr>
<td>Venous injury</td>
<td>3.56</td>
</tr>
<tr>
<td>Major operative procedure</td>
<td>1.53</td>
</tr>
<tr>
<td>Lower extremity fracture (AIS ≥ 3)</td>
<td>1.92</td>
</tr>
<tr>
<td>Age ≥ 40 years</td>
<td>2.01</td>
</tr>
<tr>
<td>Venous injury</td>
<td>3.56</td>
</tr>
<tr>
<td>Head injury (AIS ≥ 3)</td>
<td>1.24</td>
</tr>
</tbody>
</table>

p ≤ 0.0125 for all factors
PROPOSED ALGORITHM

Injured Patient

High Risk Factor
- Age ≥ 40
- Pelvic fx
- Lower extremity fx
- Shock
- Spinal cord injury
- Head trauma (AIS ≥ 3)

Contraindication for heparin?
- No
- Yes

LMWH
- Yes
- Mechanical compression

Very High Risk Factor
- Major operative procedure
- Venous injury
- Ventilator days > 3
- 2 or more high risk factors

Contraindication for heparin?
- No
- Yes

LMWH and mechanical compression
- Mechanical compression and serial CFD
- OR temporary IVC filter

“APPEARANCES ARE DECEPTIVE”

Historical Perspectives
- **1850**: Rudolph Virchow described PE
- Recognized origin in femoral/pelvic veins
- **1910**: Trendelberg ligated IVC for PE
- **1948**: Only 48 cases of IVC ligation

IVC Plication
- IVC Ligation: post-op edema/ulceration
- IVC Ligation: Sudden hypotension!
- IVC Plication: absorbable sutures: unpredictable
- **1964**: IVC Clip
IVC Filters: Indications

- Recurrent VTE despite adequate anticoagulation
- Documented VTE but with contraindications to anticoagulation
- Complications while on anticoagulation

“Filter Fever”

From Filter Fever to Filter Failure

- Technical
- Timing
- Truth
- Trievable (as in Re)
- Tale

Prophylactic Vena Cava Filters?

- Problems:
 - Recurrent PE: 3%
 - No protection against DVT
 - 10%: caval thrombosis
 - permanence: leg edema
 - migration/IVC perforation
 - timing: 6% PE within 24 hours
TIMING

• PE-occurs within 24 hours of injury: 6%*
• PE-seen on CT on day 1: 38%**
• Early PE: highest in patients with fractures
• For filter to be effective: placement in ED?

*Owens 1997
**Scalea 2007

TRUTH

Independent Risk Factors	Odds Ratios
Head Injury (AIS≥3) | 1.24 |
Major Operation | 1.53 |
Lower Extremity Fx (AIS≥3)| 1.92 |
Age > 40 years | 2.01 |
Venous Injury | 3.56 |
Ventilator Days >3 | 8.08 |

TRUTH: PART II

- 3,883/450,375: IVC FILTERS
- 86%: PROPHYLACTICALLY
- 410 PATIENTS: NO RISK FACTOR!

Retrievable Filters: “NOT”

- May be retrieved within 5 days
- May be left in place: 30 days?
- Solution for high risk patients?
- Leads to 3-fold increase use
- AAST study: >400 patients
- Only 22% were retrieved!
- $100,000/ PE prevented

Antevil J Trauma 2006
Karmy-Jones J Trauma 2007

FICTION FEVER (AS IN “PULP”)

Hospital-Specific Risk Factors for Filter Fever

- 263 Northern California Hospitals
- Frequency of VCF for VTE varied widely
- Risk of getting a filter for acute VTE:
 - Admission to Rural Hospital
 - Admission to small hospital
 - Admission to private hospital
 - Not admitted to Kaiser

JAMA 2013
Fondaparinux For The Prevention Of Venous Thromboembolism In High-risk Trauma Patients

J.P. Lu, MD and M. Margaret Knudson
U. Of California, San Francisco

Fondaparinux
• Synthetic, non-heparin polysaccharide
• Long half life: once-daily dosing
• Excreted unchanged by kidney
• Effective in orthopedics and general surgery
• Previously untested in trauma

Mechanism Of Action
• Binds to antithromin III, which inactivates factor Xa, preventing thrombin formation

Study Objectives
• To evaluate the efficacy and safety of fondaparinux for DVT prophylaxis in trauma patients
• To implement a VTE prevention protocol based on stratified risk factors
• To measure Fondaparinux anti Xa activity in trauma patients
Hypotheses

- VTE rate would be less than 5% in high-risk trauma patients with **Fondaparinux**
- **Fondaparinux** would NOT cause bleeding
- Anti-Xa activity would be therapeutic

Methods

- **Subjects:** consecutive trauma admissions
- **Inclusion criteria:**
 - Age ≥ 18
 - Risk factor for VTE
 - Anticipated hospital stay > 5 days
- **Exclusion criteria:**
 - Prisoners
 - Pregnant women

Proposed Algorithm

Injured Patient

- **High Risk Factor** (OR for VTE $= 2\text{-}3$)
 - Age ≥ 40
 - Pelvic fx
 - Lower extremity fx
 - Shock
 - Spinal cord injury
 - Head trauma (AIS ≥ 3)

- **Contraindication for heparin?**
 - No
 - Yes

 - **FND: 2.5mg**
 - **Mechanical compression**

- **VERY High Risk Factor** (OR for VTE $= 4\text{-}10$)
 - Major operative procedure
 - Venous injury
 - Ventilator days > 3
 - 2 or more high risk factors

- **Contraindication for heparin?**
 - No
 - Yes

 - **FND and mechanical compression**
 - **Mechanical compression and serial CFD OR temporary IVC filter**

Protocol

- **Enrollment after consent**
- **Ultrasound on admission and Q 5-7 days**
- **Included both upper and lower extremities**
- **Fondaparinux within 36 hours**
Results: Enrollment

Enrolled Patient, $n = 106$

- fondaparinux: $n=89$
 - excluded: $n=12$
 - excluded after late crossover: $n=2$

- No fondaparinux: $n=17$

Results: Risk Factors

- Major Operation
- Age > 40
- LE Fx
- SBP < 90
- Mech
- Vent > 72 hr
- Pelvic Fx
- Venous injury

Results: Incidence Of DVT

- fondaparinux: $2/81$, 2.5%
- No fondaparinux: $2/6$, 33.3%
Results

- 2 DVTs in Fondaparinux: 1 with PIC line; 1 on initial scan prior to receiving drug*
- **No bleeding** associated with Fondaparinux
- **No thrombocytopenia**
- No other major AEs identified

*intent to treat

Results: Anti Xa Activity

<table>
<thead>
<tr>
<th>mg/L</th>
<th>Trough</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td></td>
<td>0.3</td>
</tr>
</tbody>
</table>

Summary

- Fondaparinux has several advantages:
 - No risk of HIT
 - Once daily dosing: **improves compliance**
 - Cost effective
- No major bleeding episodes or AEs
Conclusions

- Fondaparinux: safe and effective in trauma
- **DVT rate:** < 2% in high-risk patients
- Algorithm: identified all high-risk patients
- Combination of algorithm and Fondaparinux: Promising new approach to DVT prophylaxis

Practice Patterns VTE Prophylaxis in Trauma

- 315 patients: 11% VTE
- Early prophylaxis: 4% risk
- Prophylaxis after 4 days: **3 times greater!**

Historical Perspective: Pulmonary Emboli

- Recognized post-injury complication: 1934*
- Mortality rates: **25-50%**
- Clinical presentation: acute hypoxia, collapse
- Diagnostic study: **autopsy**

McCartney, Am J Pathology
Current Perspective: PE

- “Potentially preventable” complication
- Clinical Presentation: unexplained drop PaO₂
- Often incidental finding: multidetector CT scan
- Quality indicator: CMS, JACHO, AHRQ

Purpose

- To describe the current incidence of pulmonary embolism following trauma in the United States
- To determine the PE-attributable mortality

Major Hypotheses

1. Risk factors for PE-different from DVT
2. PE-incidence rates are increasing
3. PE-attributable mortality is decreasing

Methods

- ACS/NTDB
 - Adult patients: Level I/II centers*
 - Current version: 2007-2009
 - Historical comparison: 1994-2001 (version 1)
 - Comparison: centers contributing to both
 - Hierarchical logistic regression models: risk factors, mortality
* (centers reporting at least one complication)
Results: Current NTDB Cohort

- 888,652 Patients; 326 Trauma Centers
- Overall mortality: 1.8%
- 9,398 episodes: DVT (1.06%)
- 3,738 episodes: PE (0.42%)
- Only 20% with PE had DVT reported

Results: IVC Filters

- 16,809 patients: 1.9% of total population
- 13,201: Prophylactic
- Center clustering: 0%-10.6%

Risk Factor Analysis

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>DVT (9,398); OR (95% CI)</th>
<th>PE (3,738); OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe TBI</td>
<td>1.34 (1.20-1.48)*</td>
<td>0.87 (0.73-1.06)</td>
</tr>
<tr>
<td>Ventilator Days >3</td>
<td>5.31 (5.05-5.60)*</td>
<td>3.81 (3.48-4.16)</td>
</tr>
<tr>
<td>Severe Chest Injury (AIS>3)</td>
<td>1.07 (1.01-1.12)</td>
<td>1.42 (1.30-1.55)*</td>
</tr>
<tr>
<td>Lower Ext. Fracture (AIS>3)</td>
<td>1.53 (1.45-1.62)</td>
<td>1.81 (1.67-1.97)</td>
</tr>
<tr>
<td>Pelvic Fracture</td>
<td>1.32 (1.24-1.41)</td>
<td>1.19 (1.08-1.32)</td>
</tr>
<tr>
<td>Spine Injury (AIS>4)</td>
<td>1.58 (1.42-1.75)</td>
<td>1.91 (1.61-2.27)</td>
</tr>
<tr>
<td>Shock (SBP<90)</td>
<td>1.23 (1.14-1.34)</td>
<td>1.19 (1.04-1.36)</td>
</tr>
</tbody>
</table>

Changes over Time: PE

<table>
<thead>
<tr>
<th></th>
<th>Historical Number (%)</th>
<th>Adjusted OR (95% CI)</th>
<th>Current Number (%)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Rate</td>
<td>499 (0.21%)</td>
<td></td>
<td>890 (0.49%)</td>
<td></td>
</tr>
<tr>
<td>Mortality-PE</td>
<td>73 (15%)</td>
<td>3.03 (2.02-5.46)</td>
<td>111 (11%)</td>
<td>2.42 (1.91-3.06)</td>
</tr>
</tbody>
</table>
Discussion: Potential Explanation

- 1. True increased incidence of PE
- 2. Better reporting in NTDB/NTDS
- 3. “Sicker” patients in current cohort
- 4. Failure of VTE prophylactic measures
- 5. Improved methods of detection

Uncoupling DVT and PE

Severely Injured Patient
- Shock
- Coagulopathy

Hypersusceptible State

TBI
Fractures
Venous Injury
Chest Injury
Inflammation

Protein C Depletion?

DVT

PE rates versus Prophylactic IVC filters

<table>
<thead>
<tr>
<th>PE rates</th>
<th>Prophylactic IVC Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical</td>
<td>Current</td>
</tr>
<tr>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>0.10%</td>
<td>0.20%</td>
</tr>
</tbody>
</table>

Conclusions

- PE: increasingly recognized post injury
- PE: decreased attributable mortality
- PE: may develop de novo
- PE: chest trauma/inflammation
- PE: may not be prevented by filters
Knudson’s Trauma Triad
- Paralysis
- Immobilization
- Venous trauma
- Stasis
- Severe injuries
- Endothelial damage
- Hypercoagulability

Knudson’s Trauma Square
- Venous trauma
- Fractures
- Chest trauma
- Endothelial damage
- Inflammation
- Stasis
- Hypercoagulability

MILITARY EXPERIENCE WITH VTE
- High amputation rate: “dismount” injuries
- Massive transfusions and shock
- Prolonger Air-Evac
- Screening: **14.5% DVT RATE**
- Screening: **4.42% PE RATE**
- Thrombosis post-blast?

POC Coagulation Monitoring
- Thrombelastograph (Haemoscope Corp.)
- Sonoclot (Sienco Inc.)
TEG Monitoring of Enoxaparin

- Standard prophylactic doses are inadequate in some patients: anti-Xa levels
- TEG-based dosing decreased DVT
- Prospective multicenter study

 - Malowski J Trauma 2010; Van J Trauma 2009

VTE PROPHYLAXIS IN TBI

- Progression of the injury vs. PE
- **DEEP I Study**: enoxaparin safe at 72 hours*
- **SFGH/TEG Study**: Normal at 24 hours*
- Severe TBI: hypercoagulable

 Phelan et al J Trauma 2012
 Phelan: J Neurotrauma 2012
 Cohen: unpublished

THE ORIGINAL MISSION HOSPITAL

SFGH: AS REAL AS IT GETS!
BADASS GRL: PE Prevention Possible. Think outside