Optimizing Anesthesia for Spine Surgery:

Can We Help Reduce Postoperative Pain?

Jeremy A. Lieberman, MD
Chief, Spine Anesthesia Service
Dept. of Anesthesia & Perioperative Care
UCSF

Objectives

- Can perioperative anesthetic choices reduce acute post-operative pain?
- Can we reduce the incidence or severity of chronic post-surgical pain?

Ketamine, Gabapentin

Anesthesiologist’s “Window”

Surgical Intervention

- Goal: make your back feel better

Surgery is gentle
Reality

• What surgeons actually do:

Acute Pain Pathways

• Surgery activates pain receptors –
 Firing of small nerves in the periphery:
 Activity in sensory neurons or nerve roots:

 • Induces peripheral and central effects

“Wind Up”

Repeated stimulation of peripheral nerve fibers causing sensitization of the posterior horn neurons
“Preemptive Analgesia”

- Block or reduce afferent pain stimuli from sensitizing the spinal cord or brain:
 - Local
 - Regional anesthesia
 - Peripheral nerve blocks
 - Neuraxial blocks

Mediators

- Neurotransmitters / Receptors:
 - Glutamate, NMDA, NO, NK

- Inflammatory agents:
 - Interleukins
 - Cytokines

Systemic “Preemption”

- Certain anesthetics will interfere with the signals coming from the periphery that may “wind up” the spinal cord

- Inhaled anesthetics & propofol = poor
- Opiates = great!

Why Not Use Lots of Opiates?

- They are useful for balanced anesthesia
- Opiates facilitate evoked potentials

- High degree of side-effects:
 - Respiratory depression
 - Nausea, itching, ileus, delerium
Opiate Tolerance

- Opiates induce opiate tolerance !!!
 - Rapidly
 - Worse with faster onset, shorter acting agents
 - Fentanyl, Sufentanil, Remifentanil
 - Patients with existing pain – already tolerant

- Block development of tolerance
 - Limit the use of perioperative opiates

“Multimodal” Approach

- Blunt pain; limit opiates
- Many studies:
 - 1980’s: NSAIDs -- Toradol
 - 2000’s: COX-2 -- Vioxx
 - 2010’s: IV Acetaminophen ??

- Major Setback: 2009
 - Reuben (21 retractions)

Ketamine Hydrochloride

- Dissociative anesthetic
- μ-receptor agonist
- NMDA antagonist
 + Analgesia
 + Reduces tolerance
 - Hallucinations
 - Hemodynamic effects

Ketamine

Ketamine as an Adjunct to Postoperative Pain Management in Opioid Tolerant Patients After Spinal Fusions: A Prospective Randomized Trial

Urban et al. HSSJ 2008
Ketamine

Intraoperative Ketamine Reduces Perioperative Opiate Consumption in Opiate-dependent Patients with Chronic Back Pain Undergoing Back Surgery

<table>
<thead>
<tr>
<th></th>
<th>Placebo: 0.5</th>
<th>Ketamine: 0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative*</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>24 Hrs Postop**</td>
<td>202</td>
<td>142</td>
</tr>
</tbody>
</table>

units: Morphine Equivalents
* mg/hr ** mg/24 hrs

Loftus, Anesthesiology 2010

Ketamine and Acute Pain

Intraoperative ketamine clearly reduces postoperative pain for a variety of procedures

Dahl, Cochrane 2006; Himmelseher, Anesthesiology 2004

GABA Analogs

- Gabapentin
- Pregabalin

- Anticonvulsants
- Neuropathic pain

Gabapentin

50 patients having laminectomy or fusion:
- SINGLE DOSE: 1200 mg oral Gabapentin
- 1 hour before surgery

Turan, Anesthesiology 2004
Gabapentin

Table 3. Morphine Consumptions (mg) in Gabapentin and Placebo Groups

<table>
<thead>
<tr>
<th>Hours</th>
<th>Gabapentin (n = 25)</th>
<th>Placebo (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.3 ± 1.8*</td>
<td>6.7 ± 2.1</td>
</tr>
<tr>
<td>2</td>
<td>2.7 ± 1.8*</td>
<td>5 ± 2.4</td>
</tr>
<tr>
<td>4</td>
<td>2.4 ± 1.8*</td>
<td>6.4 ± 4.3</td>
</tr>
<tr>
<td>6</td>
<td>2.4 ± 2.4*</td>
<td>6.2 ± 3.9</td>
</tr>
<tr>
<td>12</td>
<td>2.9 ± 2.3*</td>
<td>8 ± 5.1</td>
</tr>
<tr>
<td>Total morphine consumption</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Turan, Anesthesiology 2004

Gabapentin – best dose?

67 pts – Lumbar fusion
Median dose - 22 mg/kg
Effective dose: 30% reduction in morphine

100 pts – lumbar disk
0, 300, 600, 900, 1200 mg
Maximal benefit with 600 mg dose
Effective dose: 40% reduction fentanyl

Gabapentinoids

• Meta-Analysis for use in Spine Surgery:
 – 4 studies
 – ALL showed reduced narcotic need, lower pain scores, & fewer side-effects

• Other surgery:
 – Multiple reviews show benefit
 – Both gabapentin & pregabalin effective

Post-Surgical Chronic Pain

• Definition:
 – Pain lasting > 3-6 months; Different from preop

• Incidence: ~ 10% overall

• Risk Factors / Predictors:
 – “catastrophizing”
 – Fear of surgery, anxiety, depression
 – Less correlation with: surgical trauma or degree of preop pain

Gabapentin / Pregabalin

• Gabapentin decreases anxiety and “catastrophizing” when given preoperatively

Clarke Anesth. & Anal. 2013; Clarke CJA 2013

Ketamine and Chronic Pain

• Rectal Cancer
 – Placebo
 – IV ketamine
 – All with thoracic epidural

De Kock et al. Pain 2001

Ketamine for Spine

• Opiate tolerant patients
 – Equivalent preop narcotic needs
 – Intraop: Ketamine infusion vs. placebo

• 6 weeks post-op: Ketamine: 0.8 mg/hr* Control: 2.8 mg/hr*

Loftus, Anesthesiology 2010

* Morphine equivalents

UCSF Anesthetic Cocktail

• Low-dose inhaled agent (<0.3 MAC) or TIVA
• Propofol: 50 -150 mcg / kg / min
• Fentanyl: 0 - 3 mcg / kg / hr
• Lidocaine: 1.5 - 2.0 mg / kg / hr
• Ketamine: 3 - 10 mcg / kg / min
• IV Acetaminophen 1000 mg

* Consider periop gabapentin (or pregabalin)
Implementation Barriers

• Lack of Awareness

• Lack of Concern
 – Anesthesiologist: focus on OR only
 – Surgeon: chronic pain is someone else’s problem

• Lack of Collaboration
 – Preop clinic
 – Acute Pain Service

Summary

• Intraoperative Ketamine reduces postoperative pain
• Peri-operative Gabapentin / Pregabalin reduces postoperative pain
• These agents facilitate achieving other anesthetic goals with little downside
• Their use is NOT universal
• Further studies on pain and outcomes are needed