Pain, Disability and Adult Spinal Deformity; Old Myths, New Findings and Efforts from International Spine Study Group

Shay Bess, MD

3rd Annual UCSF Techniques in Complex Spine Surgery Course
Las Vegas, NV
November 8-9, 2013

Disclosures Shay Bess
• Consulting= Depuy/Synthes, Medtronic, Allosource, K2M, Alphatec
• Royalties= Pioneer Spine, K2M
• Research support= Depuy/Synthes, Medtronic, K2M
• Scientific advisory board= Allosource

Adult Spinal Deformity and Disability

• Traditional teaching= scoliosis is not painful
• “Supporting evidence”
 – Weinstein SL. JBJS 2000
• Results
 – LIS = more pain and cosmetic
 – LIS 68% = little or moderate pain
 – No effect on function, marital

Adult Spinal Deformity and Disability

• Problems Weinstein Studies
 1. No standardized HRQOL
 – Modified pain, depression, function and cosmesis scores
 2. No sagittal analysis
 – All patients= PA only
 – Fundamental ASD evaluation
 3. Sagittal spinopelvic malalignment
 – Foundation pain and disability spinal deformity
 – Primary reason for not diagnosing pain ASD
International Spine Study Group

• ASD research needs:
 – Standardized clinical/radiographic evaluation
 – HRQOL correlations
 – Best practice guidelines
 • Clinical, economic, complications
• ISSG: Multi-center research group
 – 13 sites
 – Evaluation & treatment ASD
 – Radiographic, psychological, HRQOL
 – Cost effectiveness
 – Health impact vs. disease states
 – Preoperative planning
 – Complications

<table>
<thead>
<tr>
<th>Site</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHSC</td>
<td>Hart</td>
</tr>
<tr>
<td>UC Davis</td>
<td>Gupta, Klineberg</td>
</tr>
<tr>
<td>UCSF</td>
<td>Alias, Dainir, Mummaneri</td>
</tr>
<tr>
<td>San Diego</td>
<td>Alvarado, Mundy, Eastlack</td>
</tr>
<tr>
<td>Colorado</td>
<td>Bass, Line</td>
</tr>
<tr>
<td>Baylor</td>
<td>Hostin, O’Brien, McCarthy</td>
</tr>
<tr>
<td>Kansas</td>
<td>Burton</td>
</tr>
<tr>
<td>Johns Hopkins</td>
<td>Kebaish</td>
</tr>
<tr>
<td>Washington Univ</td>
<td>Buchowski</td>
</tr>
<tr>
<td>HSS</td>
<td>Boachie, Kim</td>
</tr>
<tr>
<td>NYU/HUD</td>
<td>Lalagi, Schwab</td>
</tr>
<tr>
<td>Virginia</td>
<td>Shaffrey, Smith</td>
</tr>
</tbody>
</table>

ISSG Structure

• Independent private foundation (ISSGF 501 3c formed 2010)
• Online database (initiated 2009)
 – Host site data entry; central data QA
• Centralized radiographic measures (initiated 2009)
 – Upload to FTP server (NYU site); measurements SpineView software
• Personnel
 – Central coordinator
 – Accountants and legal
 – Health economists (JHU faculty and Baylor)

ISSG Projects

1. Prospective Operative vs. NonOp for ASD
 – Consecutive enrollment ASD (scoliosis ≥20°, SVA≥5cm, PT≥25°, or TK> 60°)
 – Total =906; OP=415; NON=491
2. Three Column Osteotomy Database (3CO)
 – Total =776 (data collection on going)
 – Complete radiographic data=572
3. Proximal Junctional Failure (PJF); initiated 8/2012
 – Retrospective analysis PJF in ASD
 – Definition, incidence, risk factors, treatment
4. Prospective Cervical Deformity (PCD); initiated 1/1/2013
 – Operative treatment adult PCD
5. Low grade adult spondylolisthesis; funding approved 2/2013
6. Cost effectiveness OP vs. NON for ASD; funding pending
7. Root cause analysis for success and failure of ASD surgery; pending

ISSG Abstract Productivity SRS/IMAST Submissions

- Submitted
- Accepted Podium
- Accepted Poster
Health Impact Comparison of Different Disease States and Population Norms to Adult Spinal Deformity (ASD): A Call for Medical Attention

North American Spine Society 2012 (Best Paper Nominee)
Scoliosis Research Society 2012
American Academy of Orthopaedic Surgeons 2013
American Academy of Neurosurgery 2012
AANS/CNS Joint Section 2013

Background Information

- **SF-36 for ASD**
 - Little data comparing disease impact ASD vs. other disease states
- **Study Purpose**
 - Use SF-36 baseline values
 - Consecutive cohort ASD patients
 - No prior spine surgery
 - Compare ASD SF-36 values
 - United States general population
 - United States generational norms
 - United States disease specific norms
 - Compare disease impact using MCID values
Materials and Methods

- Data collection
 - Demographic, radiographic, HRQOL
- ASD SF-36
 - Physical component score (PCS)
 - Mental component score (MCS)
- Compared to United States (US)
 - Total population norms
 - Age generational norms
 - Disease specific norms
 - Norm based scoring (NBS)
 - MCID values (cross-sectional)
 - PCS = 3 NBS points
 - MCS = 3 NBS points

Results: Total

<table>
<thead>
<tr>
<th>Disease State</th>
<th>PCS: mean NBS points</th>
<th>MCS: mean NBS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Total Population</td>
<td>50</td>
<td>49.9</td>
</tr>
<tr>
<td>US Healthy Population</td>
<td>55.4</td>
<td>52.9</td>
</tr>
<tr>
<td>ASD</td>
<td>46.9</td>
<td>49.4</td>
</tr>
<tr>
<td>Back Pain</td>
<td>45.7</td>
<td>47.6</td>
</tr>
<tr>
<td>Cancer</td>
<td>40.9</td>
<td>47.6</td>
</tr>
<tr>
<td>Depression</td>
<td>45.4</td>
<td>36.3</td>
</tr>
<tr>
<td>Diabetes</td>
<td>41.1</td>
<td>47.9</td>
</tr>
<tr>
<td>Heart Disease</td>
<td>38.9</td>
<td>48.3</td>
</tr>
<tr>
<td>Hypertension</td>
<td>44.0</td>
<td>49.7</td>
</tr>
<tr>
<td>Limited Use Arms</td>
<td>39.0</td>
<td>43.0</td>
</tr>
<tr>
<td>Lung Disease</td>
<td>38.3</td>
<td>45.6</td>
</tr>
</tbody>
</table>

data collection

- Demographic, radiographic, HRQOL
- ASD SF-36
 - Physical component score (PCS)
 - Mental component score (MCS)
 - Compared to United States (US)
 - Total population norms
 - Age generational norms
 - Disease specific norms
 - Norm based scoring (NBS)
 - MCID values (cross-sectional)
 - PCS = 3 NBS points
 - MCS = 3 NBS points

Results: ASD No Other Comorbidities

<table>
<thead>
<tr>
<th>Disease State</th>
<th>PCS: mean NBS points</th>
<th>MCS: mean NBS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Total Population</td>
<td>50</td>
<td>49.9</td>
</tr>
<tr>
<td>US Healthy Population</td>
<td>55.4</td>
<td>52.9</td>
</tr>
<tr>
<td>ASD</td>
<td>46.9</td>
<td>49.4</td>
</tr>
<tr>
<td>Back Pain</td>
<td>45.7</td>
<td>47.6</td>
</tr>
<tr>
<td>Cancer</td>
<td>40.9</td>
<td>47.6</td>
</tr>
<tr>
<td>Depression</td>
<td>45.4</td>
<td>36.3</td>
</tr>
<tr>
<td>Diabetes</td>
<td>41.1</td>
<td>47.9</td>
</tr>
<tr>
<td>Heart Disease</td>
<td>38.9</td>
<td>48.3</td>
</tr>
<tr>
<td>Hypertension</td>
<td>44.0</td>
<td>49.7</td>
</tr>
<tr>
<td>Limited Use Arms</td>
<td>39.0</td>
<td>43.0</td>
</tr>
<tr>
<td>Lung Disease</td>
<td>38.3</td>
<td>45.6</td>
</tr>
</tbody>
</table>

Results: ASD vs. U.S. Disease Norms

- ASD vs. U.S. Healthy and Disease Norms
 - PCS
 - Healthy US = 14.5 NBS (4 MCID)
 - Back pain/Sciatica <4.8 NBS (one MCID)
 - Hypertension <3.1 NBS (one MCID)
 - Similar
 - Cancer
 - Diabeties
 - Heart disease
 - Limited use arms or legs
 - Lung disease
Conclusions

- ASD = substantial disease impact
- SF-36 questionnaire/MCID values
 - ASD = 3 MCID values below U.S. general population
 - <25th percentile all generations except youngest
 - Greater generational worsening
- ASD vs. other disease states
 - Worse
 - Back pain/sciatica
 - Hypertension
 - Similar
 - Cancer, diabetes, heart & lung disease
- Future work
 - Dissemination: medical community & Federal funding sources
 - Health economics: cost effectiveness ASD vs. other disease states

Disease State Correlates for Type and Severity of Adult Spinal Deformity;
Assessment Guidelines for Health Care Providers

20th International Meeting on Advanced Spine Technologies
Annual Meeting
Vancouver, Canada
July 2013

Purpose, Materials and Methods

- Study Purpose
 - Compare types/severity ASD
 - Other disease states
- Materials and Methods
 - Consecutive cohort ASD patients
 - No prior surgery
 - ISSG prospective, multi-center database
 - ASD organized
 - Sagittal vs. coronal deformity
 - Deformity severity
 - ASD baseline SF-36 compared
 - United States general population
 - United States disease specific norms
 - Disease impact compared using MCID values

Results: ASD Deformity Type and Disability

- ASD Demographic
 - N=497
 - Age 50.4 years
 - Scoliosis= 45.3°
 - PT= 18.8°
 - SVA= 19.9mm
- ASD PCS
- PCS worsens
 - Curve location
 - Sagittal malalignment
- Multivariate analysis worsening PCS
 - PI-LL (R=-0.44)
 - SVA (R=-0.40)
 - PT (R=-0.38)
Results: ASD Type, Severity and Disease Correlates

- ASD Deformity Type:
 - Scoliosis Thoracic=2 MCID below General Population
 - Scoliosis Lumbar =5 MCID below General Population
 - L curve + Severe SSM; SV A>10=PCS lower ANY RECORDED VALUE!!

ASD Deformity Types:
- S123: Thoracic=2 MCID below General Population
- Sc123: Lumbar =5 MCID below General Population
- L curve + Severe SSM; SV A>10=PCS lower ANY RECORDED VALUE!!

Conclusions and References

- ASD worsening impact
 - Deformity location
 - Deformity type
 - Deformity severity
- ASD vs. other disease states
 - Greater impact more recognized diseases
- Future work
 - Dissemination: medical community & Federal funding sources
 - Cost effectiveness ASD vs. other disease states
- References

Summary

- ISSG efforts and future direction
- Adult Spinal Deformity= disability
 - Parameters correlating with disability
 - Guidelines for evaluation
- ASD treatment
 - Demonstrate efficacy
 - Who benefits most
 - Risk factors for poor outcome
 - Alignment goals
- Complication analysis
 - Risk factors
 - Impact on outcome and cost
 - BMP use
- Cost effectiveness
 - Operative vs. nonoperative
 - Durability treatment

ASD: Operative vs. NonOperative Care

- Treatment choices ASD
 - ISSG, Spine 2009
 - Retrospective; 290 ASD
 - OP=NON: age, comorbidities
 - OP worse HRQOL
 - Surgical treatment
 - Youngest=scoliosis
 - Oldest= pain/disability
 - Fu,ISSG, SRS/NASS 2012
 - Prospective 497 ASD
 - OP worse HRQOL
 - Youngest OP=scoliosis
 - Oldest OP= SSM
Thank You