Decision Making in the Management of Acoustic Neuromas

Steven W. Cheung
Otology, Neurotology, and Skull Base Surgery
University of California, San Francisco
21 March 2014

Disclosure

- Equity interest in Decisive Health Systems, Inc, a decision aid venture firm.

Agenda

- Background
 - Size Metrics (1-, 2-, and 3-Dimensions)
 - Growth Stages
 - Clinical Outcomes: Hearing and Facial Nerve
- Management Choices
- Acoustic Neuroma Decision-Making
 - Provider Centric
 - Patient Centric
 - Health Decision Engine
- Vehicle for Informed Consent

Background

- 10% of Newly Diagnosed Intracranial Tumors
- Incidence 1:100,000
- MRI with Gadolinium is Definitive
- Benign Tumor Arising from a Vestibular Nerve
- Presenting Symptoms
 - Asymmetric Hearing Loss
 - Tinnitus
 - Balance Disturbance
 - Facial Numbness
 - Facial Weakness
- Sporadic (unilateral) versus NF2 (bilateral)
Acoustic Neuroma Descriptors

Intracanalicular (IC) and Extracanalicular (EC)

Complete versus Incomplete Internal Auditory Canal Penetration

Acoustic Neuroma Size

1-, 2-, and 3-D Measurements

A Spheroid Weighted-Axis Converter of Vestibular Schwannoma Size: Maximum Diameter and Cisternal Volume

\[V_{\text{cist}} = \frac{4}{3}\pi r^3 \]

\[V_{\text{cisternal}} = \frac{4}{3}\pi \left(\frac{\text{max}(AP)}{2} \right)^3 \]

Acoustic Neuroma Size Comparison

Acoustic Neuroma Growth Stages

Intracanalicular (IC)

Cisternal

Brainstem Compressive

Hydrocephalic

Type A

Type B

Type C

Type D

Acoustic Neuroma Growth Stages

Acoustic Neuroma Size Comparison

Intercanalicular (IC)

≤ 4 mm

10 mm

15 mm

20 mm

25 mm

30 mm

35 mm

40 mm
Hearing - Grading Scales

<table>
<thead>
<tr>
<th>Class</th>
<th>PTA (dB)</th>
<th>SDS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-30</td>
<td>70-100</td>
</tr>
<tr>
<td>2</td>
<td>31-50</td>
<td>69-50</td>
</tr>
<tr>
<td>3</td>
<td>51-90</td>
<td>49-5</td>
</tr>
<tr>
<td>4</td>
<td>91-max loss</td>
<td>4-1</td>
</tr>
<tr>
<td>5</td>
<td>No response</td>
<td>No response</td>
</tr>
</tbody>
</table>

GARDNER-ROBERTSON (1988)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal symmetrical function in all areas</td>
</tr>
<tr>
<td>II</td>
<td>Slight weakness noticeable only on close inspection
Complete eye closure with minimal effort
Slight asymmetry of smile with maximal effort
Synkinesis barely noticeable, contracture, or spasm absent</td>
</tr>
<tr>
<td>III</td>
<td>Obvious weakness, but not disfiguring
May not be able to lift eyebrow
Complete eye closure and strong but asymmetrical mouth movement with maximal effort
Obvious, but not disfiguring synkinesis, mass movement or spasm</td>
</tr>
<tr>
<td>IV</td>
<td>Obvious disfiguring weakness
Inability to lift brow
Incomplete eye closure and asymmetry of mouth with maximal effort
Severe synkinesis, mass movement, spasm</td>
</tr>
<tr>
<td>V</td>
<td>Motion barely perceptible
Incomplete eye closure, slight movement corner mouth
Synkinesis, contracture, and spasm usually absent</td>
</tr>
<tr>
<td>VI</td>
<td>No movement, loss of tone, no synkinesis, contracture, or spasm</td>
</tr>
</tbody>
</table>

AAO-HNS (1995)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-30
70-100</td>
</tr>
<tr>
<td>B</td>
<td>31-50
69-50</td>
</tr>
<tr>
<td>C</td>
<td>51-100
50-100</td>
</tr>
<tr>
<td>D</td>
<td>0-100
49-0</td>
</tr>
</tbody>
</table>

Facial Nerve - House Brackmann

<table>
<thead>
<tr>
<th>Grade</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal symmetrical function in all areas</td>
</tr>
<tr>
<td>II</td>
<td>Slight weakness noticeable only on close inspection
Complete eye closure with minimal effort
Slight asymmetry of smile with maximal effort
Synkinesis barely noticeable, contracture, or spasm absent</td>
</tr>
<tr>
<td>III</td>
<td>Obvious weakness, but not disfiguring
May not be able to lift eyebrow
Complete eye closure and strong but asymmetrical mouth movement with maximal effort
Obvious, but not disfiguring synkinesis, mass movement or spasm</td>
</tr>
<tr>
<td>IV</td>
<td>Obvious disfiguring weakness
Inability to lift brow
Incomplete eye closure and asymmetry of mouth with maximal effort
Severe synkinesis, mass movement, spasm</td>
</tr>
<tr>
<td>V</td>
<td>Motion barely perceptible
Incomplete eye closure, slight movement corner mouth
Synkinesis, contracture, and spasm usually absent</td>
</tr>
<tr>
<td>VI</td>
<td>No movement, loss of tone, no synkinesis, contracture, or spasm</td>
</tr>
</tbody>
</table>

Management Choices

- Observation – Serial Imaging
 - **EC ≤ 15 mm**
 - 10% Deafness Risk / Year
 - 2mm Growth Risk / Year
Stereotactic Radiosurgery
(£ £≤ 20 mm; 95% Tumor Control Rate)

Open Microsurgery
(All Sizes)
- Middle Fossa (MF)
- Translabyrinthine (TL)
- Retrosigmoid (RS)

Evolution in Decision-Making

UCSF Management Philosophy
1985 – 2004 (Provider Centric)
To intervene with which type of craniotomy,
that is the Question:

2005 – 2013 (Patient Centric)
To intervene or not to intervene,
that is the Question:
Observation versus Intervention

Observation
- **Risks**
 - Loss of Hearing Preservation Opportunity
 - Increase Likelihood of Adverse Outcomes (Larger Tumors → Higher Risk)
- **Benefits**
 - Intervention May Never Become Necessary
 - Defer Risks Associated with Intervention

Intervention
- **Risks**
 - Unfavorable Functional Outcomes (Facial Weakness, Chronic Imbalance)
 - Unfavorable Procedure-Related Outcomes (Facial Numbness, CSF Leak)
- **Benefits**
 - Favorable Outcomes (Facial Sensation Improvement, Brainstem Decompression)
 - Often Definitive (Decrease or Eliminate Monitoring Burden)

Stereotactic Radiosurgery Hearing Outcomes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gamma Knife</th>
<th>Cyber Knife</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Size</td>
<td>Dose to the tumor margin (Gy)</td>
<td>59 (156)</td>
</tr>
<tr>
<td></td>
<td>Pre-A (mean)</td>
<td>35 (41)</td>
</tr>
<tr>
<td></td>
<td>Post-A (mean)</td>
<td>30 (36)</td>
</tr>
<tr>
<td></td>
<td>Pre-A (median)</td>
<td>20 (26.5)</td>
</tr>
<tr>
<td></td>
<td>Post-A (median)</td>
<td>18 (25)</td>
</tr>
</tbody>
</table>

Simple Intervention Algorithm (Hearing and Size only)

<table>
<thead>
<tr>
<th>Hearing Grade</th>
<th>Tumor Size (cm)</th>
<th>Simple Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>C or D</td>
<td>≤ 4 mm</td>
<td>Intercameral (IC)</td>
</tr>
<tr>
<td></td>
<td>5 mm</td>
<td>GK TL</td>
</tr>
<tr>
<td></td>
<td>10 mm</td>
<td>RM</td>
</tr>
<tr>
<td>C</td>
<td>≥ 10 mm</td>
<td>TL</td>
</tr>
<tr>
<td>B</td>
<td>≤ 10 mm</td>
<td>TL</td>
</tr>
<tr>
<td>A</td>
<td>≥ 10 mm</td>
<td>TL</td>
</tr>
</tbody>
</table>

TABLE 1. Facial nerve function and hearing preservation outcomes scalable

<table>
<thead>
<tr>
<th>Tumor Size</th>
<th>X ≤ 6</th>
<th>6 ≤ X ≤ 10</th>
<th>X > 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment hearing class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>10 (17)</td>
<td>6 (10)</td>
<td>15 (25)</td>
</tr>
<tr>
<td>B</td>
<td>28 (47)</td>
<td>9 (15)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6 (9.5)</td>
<td>3 (5)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>15 (25)</td>
<td>41 (69)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hearing Preservation (~3 years)</th>
<th>Pre A or B in A or B</th>
<th>Pre A or B in A or B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre A or B in A or B</td>
<td>10.2% ± 3.8%</td>
<td>15.2% ± 4.9%</td>
</tr>
</tbody>
</table>

Spheroid Weighted-Axis Converter

<table>
<thead>
<tr>
<th>Maximum Diameter (cm)</th>
<th>Cisternal Volume (cm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>1.25</td>
</tr>
<tr>
<td>0.45</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Simple Intervention Algorithm (Hearing and Size only)
Hearing Grade A or B – Tumor Ear is Useful

Multiple Factors in Decision-Making

Key Considerations
(Tumor Ear is Poorer Hearing)
- Hearing Preservation
- Temporary Facial Weakness
- Permanent Facial Weakness
- Tumor Remnant Enlargement
- Brainstem Compression Relief
- Duration of Recovery
- Number of Treatments

Extent of Microsurgical Tumor Excision

Management Heuristics

Extracanalicular Tumor Size
- Complete IAC Penetration – Hearing Preservation drops by 50%
- 15 mm - Size Limit for Observation and Hearing Preservation
- 20 mm - Size Limit for Radiosurgery
- 25 mm - Facial Weakness Risk Accelerates
- 35 mm – Brainstem Injury Risk Accelerates
“...the current health-policy debate comes down to a very **personal** issue:

how to make ever-more-*complex decisions* when faced with **multiple options**, each with **no clear advantage** and with risks and harms that patients may **value differently**.”

Acoustic Neuroma Decision Engine

What is it?

A decision aid that organizes treatment outcomes information and quantifies patient preferences to enable shared decision-making.

Multiple Attribute Decision-Making

Conjoint Analysis

Acoustic Neuroma Decision Engine

Deafness

Facial Paralysis

Recovery Duration

Weighty Choices, in Patients’ Hands

By LAURA LANDRO

AUGUST 4, 2015, 9:18 A.M. ET

Synthetic Clinical Scenario

50 year old ♂ with a 10 mm acoustic neuroma in a serviceable hearing.

Multiple Outcomes Attributes

- Deafness
- Facial Paralysis
- Radiation Induced Neoplasm
- Recovery Duration

Conjoint Analysis Interview

Treatment A

- Hearing Loss (over 4 years) Risk: 65%
- Tumor Enlargement Risk: Medium
- Facial Weakness (permanent) Risk: 2%
- Facial Numbness (permanent) Risk: 1%

Outcomes

Treatment B

- Hearing Loss (over 4 years) Risk: 45%
- Tumor Enlargement Risk: Low
- Facial Weakness (permanent) Risk: 15%
- Facial Numbness (permanent) Risk: 4%

Strongly Prefer A **Somewhat Prefer A** **No Preference** **Somewhat Prefer B** **Strongly Prefer B**
Preference Profile & Treatment Rankings

1. Gamma Knife Radiation (95.7)
2. Retrosigmoid (GTR) (75.6)
3. Observation (30.3)

Health Decision Engine

Summary Features
- Flattens Information Asymmetry
- Operates on Personal Health Information
- Alters Locus of Decisional Control

Questions
Case Presentation

40 year old healthy woman with a unilateral 13 mm acoustic tumor and normal hearing.
- Tumor is virtually all extracanalicular
- CSF fills most of the internal auditory canal

MR Imaging Features

Treatment Outcome Attributes
(Observation, Radiation, Microsurgery)

- Useful Hearing
- Facial Movement
- Facial Numbness
- Treatment Induced Tumors
- Psychological Burden

Patient-Centric Decision-Making

- Identify 3-4 Key Outcome Attributes
- Rank Order Attributes by Querying Patient
- Explore Tradeoffs Among Treatment Options
- Help Patient Make an Informed Decision