Altering The Course Of Type 1 Diabetes

UCSF Diabetes Update 4.29.15

Stephen E. Gitelman, MD
UCSF
sgitelma@ucsf.edu

Disclosures

• Sanofi Advisory Board
• DSMB for Novo Nordisk
• Consultant for NeoStem
• Overview of the challenge
• Prevention efforts
• New onset trials
• Limitations and opportunities

Report Card From The Trenches

• Near normal glycemic control prevents or delays complications but...
• Not consistently achieving glycemic goals
 • ~20% of adolescents and 30% of adults reaching expected targets
• Still see burden of long term complications
• Toll on mental health
 • Depression
 • Eating disorders
• Mortality
Type 1 Diabetes – a progressive disease that develops over years

Considerations For Selecting Agents For New Onset Trials

- Benefit suggested by:
 - Animal models
 - Human trials in related autoimmune disease, or transplant

- Mechanism likely to be effective
 - Targets T-cells

- Safety of intervention established

- Ideal therapies are those that do not require continuous use, are tolerizing
Dilemma For DM Interventions

- Attempts at early prevention
 - Less likely to predict who will ultimately get DM
 - Larger studies conducted over longer time period
 - Less aggressive intervention, such as dietary manipulation or antigen-based therapy, more likely to be efficacious

- Later stages of intervention
 - Greater likelihood of predicting who will get DM
 - Smaller studies conducted over shorter time
 - Later intervention may require more aggressive and potentially toxic agents to have efficacy

Type 1 Diabetes Prevention

- Focus has been on 1st degree relatives, at 10-fold higher risk for T1DM than general population
 - Overall risk for siblings is ~4%
 - Screened > 100,000 first degree relatives in DPT-1

- Ultimately, will need to find means to apply to general population, not just first degree relatives
 - 90% of new onset T1DM occurs in families without proband
Prevention Of Type 1 DM

- All are large, well conducted trials
- None have shown efficacy

Primary Prevention Of Type 1 DM

- No AutoAbs

- **TRIGR:** avoidance of cow’s milk
- **NIP:** omega 3 fatty acids
- **POINT:** insulin antigen
- **BabyDiet:** gluten
- **Vitamin D**
Secondary Prevention Trials For Type 1 DM
> 2 Abs, normal OGTT: 25-50% risk for DM in next 5 yrs

- **Antigen:** Insulin, GAD
- **T cell blockade:** CTLA4 Ig

Oral Tolerance: Mode of Action

- Oral Antigen
- Regulatory T cells
- Protective Cytokines
- Inhibition of β-Cell Autoimmunity and Prevention of DM
- Insulin Producing β-cells
- Autoimmune Lymphocytes
Effect Of Oral Insulin On Progression To T1DM

Skyler et al, Diabetes Care 2005, 28: 1068

Effect Of Oral Insulin On Progression To T1DM

Only subjects with IAA > 80

Oral insulin may delay DM onset ~ 4.5 yrs

Skyler et al, Diabetes Care 2005, 28: 1068
Insulin Effect Most Evident in Subjects with Baseline IAA ≥ 300

- Oral Insulin
- Placebo

Proportion Free of Diabetes

- Log-rank P=0.01
- Peto Pr. P=0.01
- Hazard Ratio: 0.41 (0.21, 0.80)

N=63 (Ins.) and 69 (Plac.)

Projected 10 year delay

- Control
- Treated

Ann NY Acad Sci 2009; 1150:190-196

Type 1 Diabetes High Risk Prevention

> 2 Abs, abnormal OGTT: >50% risk for DM in next 5 yrs

- Anti-CD3 mAb
- Dysglycemia

Genetic Predisposition

Environmental

Loss of First Phase Insulin Response

β-cell mass

Hyperglycemia

Honeymoon phase

Modified from von Herrath et al. Nat Rev Immunol. 2007

Diabetes Center

Ann NY Acad Sci 2009; 1150:190-196
TrialNet Natural History Study

- **Who is eligible for screening?**
 - Ages 1-45 and immediate family member with DM
 - Ages 1-20 for extended family

- **What is the screening test?**
 - Single blood test for panel of autoantibodies
 - Those who are < 18 and Ab neg can be rescreened yearly

- **What happens if you have 1 or > Abs?**
 - Staging
 - Genetic screen: HLA class II
 - Metabolic screen: Oral glucose tolerance test
 - Surveillance
 - Follow-up every 6-12 months with OGTT
Why Participate In Screening?

- May help the medical community understand diabetes better
- May benefit patient’s family
 - Clarify what chances are of developing diabetes
 - Participants tend to have diagnosis of diabetes much earlier
 - Safer, avoid DKA
 - Benefit to starting insulin sooner → prolong honeymoon
- Eligible for intervention studies
 - Oral insulin, Abatacept, anti-CD3 mAb
- How to get patients screened?
 - Consider joining our affiliate network
 - UCSF can do a telephone consent and send out a kit directly to your family for testing in a local Quest lab, or
 - www.pathway2prevention.org

Type 1 Diabetes – New Onset Trials

[Diagram showing the relationship between genetic predisposition, environmental factors, and the progression of diabetes.]
By the time of diagnosis, is it too late to make a difference?

The Honeymoon

• At diagnosis, 15-40% of beta cell function remains

• Past studies suggest inevitable decline of beta cell function following diagnosis, with progression to complete loss

• However, if present, beta cell function can serve one well while it lasts...even if on supplemental insulin
 - Better overall glucose control
 - lower HbA1C, less glycemic excursion, lower risk for severe hypoglycemia, lower risk for complications
 - Examples of extended honeymoons
Prolonging the honeymoon

- **Immunotherapy works**
 - *Cyclosporine experience from the ’80s*
 - Requires continuous immunosuppression
 - Not all respond
 - Potential toxicities

New Onset T1DM Trials

Recently Reported, Underway Or Under Consideration

- Anti-CD3
- Anti-thymocyte globulin +/- GCSF, cyclophosphamide
- Anti-CD20
- Glutamate Decarboxylase (GAD)
- CTLA4 Ig
- Rapamycin + IL-2
- IL-1 antagonist
- Atorvastatin
- Alpha 1 anti-trypsin
- Alefacept
- Intensive metabolic control
- Diapep 277
- Sitagliptin + Lansoprazole
- TNF blockade
- Autologous regulatory T cells
- Autologous dendritic cells with AS oligo Rx
- Imatinib (Gleevec)
- IL-6 receptor blockade
- IL-17A blockade
- IL-7 receptor blockade
Pathogenesis Of Type 1 DM

Anti-CD3 mAb

Phase 1/2 Study of Anti-CD3 In Type 1 DM

- A single 14 day course of anti-CD3 therapy will induce tolerance and inhibit further beta cell destruction in patients with new onset Type 1 DM.
Phase 1/2 Study of Anti-CD3 In Type 1 DM

- A single 14 day course of anti-CD3 therapy will induce tolerance and inhibit further beta cell destruction in patients with new onset Type 1 DM.

Hypothesis For Phase 2 Study

- 2 courses of anti-CD3 therapy, at baseline and 12 mos, will induce tolerance and inhibit further beta cell destruction in patients with new onset T1DM

Keymeulen et al NEJM 2005; Keymeulen et al, Diabetologia 2010
AbATE Primary Endpoint

Change in C-peptide over time (primary endpoint)*

*Solid lines connect mean values; stars denote medians. Bars represent 25th and 75th percentile.

Herold et al, Diabetes 2013

AbATE Responders vs Non-responders

Change in C-peptide: responders vs. non-responders*

*Bars represent 25th and 75th percentile.

Herold et al, Diabetes 2013
Next Steps With Anti-CD3

• Define those most likely to be responders:
 – Children (8-17)
 – Enroll < 6 wks from diagnosis
 – HbA1C < 7.5%
 – Exogenous insulin use <0.4 units/kd/d
 – Differences in baseline CD4 and CD8 T cell subsets

• Further new onset anti-CD3 trials
 – Anti-CD3 alone or in combination with other agents
 • Antigen
 • GLP-1 agonists, DPPIV inhibitors

• Anti-CD3 prevention trial
anti-thymocyte globulin

extreme combo therapy
brazilian cocktail

1. stem cell mobilization
 cyclophosphamide
 g-csf
 cd34+ cells harvested
2. non-myeloablation
 cyclophosphamide
 atg
3. transplant / mobilization
 infuse cd34+ cells
 g-csf
4. prophylaxis / support
 hospitalization
 antibiotics

voltarelli et al jama, 297:1568-76, 2007
EXTREME COMBO THERAPY

BRAZILIAN COCKTAIL

Couri et al JAMA, 301:1573-9, 2009

PARTICIPANTS

- New onset T1D < 6 week Dx GAD+
- 13-31 years (mean 19.2)

RESULTS

- 20 of 23 became INSULIN FREE > 1 month
- 12 INSULIN FREE > 14 months (mean 31)
- A1c < 7% + C-peptide INCREASE at 24 mo
- BUT … short and long term concerns

LOGICAL to study lower risk components of therapy ... “BRAZIL-LITE”

Study To Arrest Type 1 DM (START Trial):

2 year Data

![Graph showing 2-hour C-peptide AUC change from baseline over 24 months.](image)

Bars represent 95% confidence intervals. Lines connect the mean values across visits for each treatment arm.

\[P = 0.380 \]

Gitelman et al, manuscript in preparation
What happened?

- Based on investigations performed to date, several mechanisms might be contributing for those who had decline in β-cell function:
 - Milieu surrounding CRS, serum sickness, steroid use, with immune activation

Effect of ATG Treatment on Lymphocyte Subsets

CD3

CD4

CD8

Values are mean and error bars are SD.

*P < 0.05

Changes In T cell Subsets following ATG Treatment
(% change from baseline)

CD4

Naive CD45RA+

CD8

Central Memory CD45RO+CD62Lhigh

P < 0.05

Persistence Of Effector Memory T cell Subsets Following ATG Treatment

CD45RO+CD62Llow

CD4

CD8

ATG

Placebo

What happened?

- Based on investigations performed to date, several mechanisms might be contributing for those who had decline in β-cell function:
 - Milieu surrounding CRS, serum sickness, steroid use, with immune activation
 - Persistence of effector memory T cells following ATG
 - Decrease in Treg number and Treg/Tem in 1st 6 months in ATG participants
Deconstructing the Brazilian Cocktail

<table>
<thead>
<tr>
<th>Agent</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATG + GCSF + Cyclophosphamide</td>
<td>+++</td>
</tr>
<tr>
<td>ATG</td>
<td>+/-</td>
</tr>
<tr>
<td>G-CSF</td>
<td>-</td>
</tr>
<tr>
<td>ATG + G-CSF</td>
<td>?</td>
</tr>
</tbody>
</table>

ATG/GCSF Combo Pilot: Established Type 1 Diabetes (Helmsley)

- Established Diabetes (4 months - 2 years)
- ATG - 2.5 mg/kg over 2 days (low dose)
 - 6.5 mg/kg in prior START Trial (ATG alone)
- GCSF - 6 mg q 2 weeks for 12 weeks
- 25 subjects, Single Blinded
- 2:1 Randomized Combo: Placebo
- Ages 12 years - 45 years within 4 mos to 2 yrs of diagnosis
 - Within 100 days of dx for START
ATG/GCSF Combo Pilot Study

Data Summary

<table>
<thead>
<tr>
<th>Months post-treatment</th>
<th>Treated</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

AUC (ng/ml/min)

- **AUC c-peptide**
 - Treated
 - Placebo

Haller et al. Journal of Clinical Investigation 2015

ATG vs ATG + GCSF

- For ATG + GCSF trial, used lower ATG dose
 - Less cytokine release syndrome, serum sickness, glucocorticoid use

- Differences in changes in T cells
 - Less nadir in T cells, more rapid recovery
 - Tregs not as impacted
 - Do not see same extent and duration of depletion
 - Increase in Treg/Tem ratio

- Larger Phase 2 study just launching with TrialNet
 - ATG + GCSF vs ATG vs Placebo
 - Ages 12-45 within 100 days of dx
Tregs - police of the immune system

- 2-5% of lymphocytes
- Suppress responses of other immune cells
 - CD4$^+$ CD25$^+$CD127lo
 - Require the transcription factor Foxp3 for development and function
- Foxp3 deficiency leads to
 - multi-organ autoimmunity and early lethality in animal models
 - IPEX (Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome) in man
Human Treg Expansion In Vitro

- CD4+CD127lo/CD25+
- αCD3/αCD28 beads (1:1 ratio)
- IL-2 (300U/ml)

Expansion Curve

- **Time (d)**
- **Cell Number**
- **Percent**

- **Average FOXP3 at day 14**
 - (range) 55.3 (89.3 to 98.3)

Treg Trial

- **Phase 1 study with infusion of autologous Tregs expanded in vitro**
 - First effort in autoimmunity

- **Subjects** 18-45 yrs old, within 2 yrs of dx and with measurable C-peptide

- **Dose escalation**

- **Fully enrolled**
 - Safe, well tolerated

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Subjects</th>
<th>Cell dose (x 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>

Diabetes Center

UCSF Benioff Children's Hospital San Francisco
C-peptide AUC Change Over Time: enrolled 3 mos -2 yrs from dx

![C-peptide AUC Change Over Time](image)

**Administration of CD4⁺CD25
highCD127⁻ Regulatory T Cells Preserves β-Cell Function in Type 1 Diabetes in Children**

- Phase 1 trial
 - 10 Subjects, 8-16 yrs, within 2 mos since dx
 - 4 pts @10x10⁶ cells/kg, 6 pts @20x10⁶/kg
 - Infusions well tolerated
 - Metabolic data at 4-5 months:
 - 2 subjects off insulin, 8 subjects <0.5 units of insulin/kg/d
 - Plans for Phase 2 new onset study in adolescents
 - Fasting C-peptide data (not stimulated) > than comparator
 - FDA has approved plans for phase 2 study in adolescents

Diabetes Care 2012
Complexities Of The Autoimmune Response:
Multiple Cell Types And Pathways Involved

Innate Immunity

Adaptive Immunity

What is Gleevec?
(Imatinib / Glivec, Novartis)

- Discovered from a high-throughput screen of chemical libraries
 - goal of identifying a tyrosine kinase inhibitor for Bcr-Abl fusion protein to treat CML

- Specific inhibitor of Abl protein TKs
 - Inhibits many other constitutively activated TKs (but not all)
 - PDGF, c-kit, c-fms, Abl-related gene, Lck

Rationale For Gleevec In T1DM

- Initial target for CML, but expanded use
- Role as anti-inflammatory agent
- Affects various arms of immune system
 - May affect T cell trafficking to islets
- Lowers ER stress
 - Decrease in beta cell death, increase in regeneration
- Improves insulin sensitivity

- In autoimmunity, effective in
 - Animal models of autoimmunity
 - Prevents and reverses DM in NOD mouse
 - Clinically, case reports and small series show benefit in autoimmunity
 - Related drug approved for RA treatment

Imatinib Study Overview

www.gleevec1d.com

- Multi-center, 2-arm, 2:1 randomized, placebo-controlled, double blinded phase II trial

 - 66 subjects, ages 12-45, with recent onset T1DM
 - Starting with adults first
 - Treatment with 400 mg of drug or matching placebo for 6 months
 (260 mg/m^2 in children)
 - Primary outcome: 2 hour stimulated C-peptide AUC in response to MMTT at 12 months

 - Secondary outcome measures will include:
 - Other metabolic measures of efficacy: insulin use, HbA1C
 - Safety: frequency and severity of adverse events
 - Mechanistic studies

- 30 subjects enrolled to date, favorable safety profile
Summary

- Current management of T1DM is problematic
 - Those with residual beta cell function do better

- Series of promising trials to prevent T1DM and preserve beta cell function in those recently diagnosed

- Gaining insights into how and what we need to accomplish for robust success
 - Resetting Teff-Treg balance

- New onset trials will inform our attempts at DM prevention and transplantation

Potential Type 1 DM Interventions

Modified from Matthews et al, Clin Exp Immunol 2010
Limitations and Opportunities

• Further analysis of what we have done to date
 – Responders vs non-responders
• Back to drawing board
 – Use of animal models
 – Human samples, nPOD
• Need surrogate measures to assess treatment efficacy
 – Currently rely on change in C-peptide
 • Indirect measure, requires 6-12 months
 – What about an immune measure?
 • Change in AutoAbs not helpful
 • Ideally track T-cell changes
 – Difficult assays, peripheral changes may not be relevant to pancreas
 – No current means for direct visualization

Acknowledgements

• UCSF
 – Jeff Bluestone
 – Mark Anderson
 – Saleh Adi
 – Stephen Rosenthal
 – Srinath Sanda
 – Hilary Thomas
• Yale
 – Kevan Herold
Help Us Cure Type 1 DM!

Contacts For Research Studies

- Stephen Gitelman, MD
 415-476-3748
 sgitelma@peds.ucsf.edu

- clinicalresearch@diabetes.ucsf.edu
 844-T1D-UCSF (813-8273)

- http://www.diabetes.ucsf.edu
Alefacept Rationale

- CD2 - LFA3 is involved with T cell co-stimulation
 - expressed on the majority of human T cells
 - effector-memory T cells > central-memory > naive T cells
- Alefacept (LFA3-Ig) binds to CD2+ T cells
 - Deactivates and depletes T cells which most highly express CD2
- Approved for use in plaque psoriasis

Effect of alefacept on CD4+ T cell subpopulations

Rigby et al, Lancet DE 2013
Efficacy Data At 2 yrs

A. 4-hr C-peptide AUC

![Graph showing efficacy data at 2 yrs](image)

Rigby et al, submitted

Trial To Reduce T1DM In The Genetically At Risk

- Can avoidance of early cow's milk exposure prevent DM?
- Hypothesis: with early exposure to cow’s milk
 - immature gut mucosa allows passage of antigenic proteins
 - cross-react with beta cell antigens
 - Supported by animal models, epidemiological studies
- Design: randomized, double blind trial
 - Enroll 2800 infants of 1st degree relatives with high risk HLA types
 - After usual initial breast feeding in first 2-3 months of life, randomized to casein hydrolysate vs cow's milk formula
 - Follow subjects prospectively until age 10
Trial To Reduce T1DM In The Genetically At Risk

Does avoidance of cow’s milk proteins lower risk?

Cumulative Incidences of > 1 AutoAb In Pilot

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Casein hydrolysate</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

P=0.02

Knip M et al. NEJM 2010;363:1900-1908

Less Hypoglycemia in those with Residual β Cell Function (0.2 pM to 0.5 pM C-peptide)

DCCT 62% Risk Reduction

Conventional Intensive Intensive

With β cell function Without β Cell Function

Diabetes 53:250-264, 2004
Less Retinopathy in those with Residual β Cell Function (0.2 pM to 0.5 pM C-peptide)

Risk Reduction: 79%
(CI: 9, 95) \(p < 0.012 \)

DCCT Intensive Therapy Group
Sustained 3+ Step Retinopathy Progression

Diabetes 53: 550-264, 2004

% Of Subjects With Detectable Random C-peptide

% Of Subjects with Random C-peptide \(\geq 0.2 \) nmol/L

AK Davis et al, Diabetes Care 2014
• NIDDK sponsored international consortium of 18 clinical centers
 – Charged with better understanding natural history of type 1 DM, and conduct prevention and new onset trials to prevent or preserve beta cell function

• Several new onset T1DM intervention trials have been conducted with 24 months or longer follow-up
 – Standardized entry criteria, DM management protocols, and beta cell assessment with serial MMTTs

• Evaluate change in beta cell function in placebo group, and treatment groups that had no effect

 Greenbaum et al, Diabetes 2012

Individual Trajectories In C-peptide AUC Over Time

- 17% retained C-peptide from baseline to 12 months, and 11% from baseline to 24 mos
- Increased likelihood with age

 Greenbaum et al, Diabetes 2012
Heterogeneity of T1D amongst recently diagnosed children and adolescents with HLA-DRB1*301 and/or HLA-DRB1*401

<table>
<thead>
<tr>
<th>“Pro-inflammatory”</th>
<th>“Partially-regulated”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral blood</td>
<td></td>
</tr>
<tr>
<td>Multi-autoantibody positivity</td>
<td>Less "pauci"-autoantibody positivity</td>
</tr>
<tr>
<td>IFNγ–dominated CD4-T-cell response</td>
<td>IL-10–dominated CD4-T-cell response</td>
</tr>
</tbody>
</table>

Based on data from Arif et al. Diabetes 2014; 63:3835–3845

Decline In Beta Cell Function By Age

Greenbaum et al., Diabetes 2012

Months from diagnosis
Multivariable Analysis of Baseline Factors Associated With AUC C-peptide Change Over Time

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Relationship with covariate across time</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (continuous), years</td>
<td>0.00038</td>
<td>0.0024</td>
</tr>
<tr>
<td>Ethnicity (not Hispanic or Latino is reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race (white is reference)</td>
<td>-0.00251</td>
<td>0.5079</td>
</tr>
<tr>
<td>BMI z score</td>
<td>-0.00247</td>
<td>0.0152</td>
</tr>
<tr>
<td>ICA512 positivity</td>
<td>0.00447</td>
<td>0.0460</td>
</tr>
<tr>
<td>Diabetic ketoacidosis (absent is reference)</td>
<td>0.00430</td>
<td>0.1156</td>
</tr>
<tr>
<td>HbA1c</td>
<td>-0.00079</td>
<td>0.3165</td>
</tr>
<tr>
<td>Insulin (per kg)</td>
<td>0.01034</td>
<td>0.0438</td>
</tr>
<tr>
<td>Autoimmune disease history</td>
<td>0.00282</td>
<td>0.4386</td>
</tr>
<tr>
<td>Platelet count</td>
<td>-0.00002</td>
<td>0.1934</td>
</tr>
<tr>
<td>Basophils</td>
<td>0.00516</td>
<td>0.0123</td>
</tr>
</tbody>
</table>

Greenbaum et al, Diabetes 2012

NA, not applicable.
Impact Of Diabetes On Society

- Currently affects ~29 million in USA
 - ~10% have type 1 DM

- Aside from asthma, DM is most common chronic disease of childhood

- Concern regarding long term complications
 - Leading cause of blindness in 20 to 74 year olds
 - Most frequent cause of end stage renal disease
 - Most common reason for non-traumatic limb amputation
 - Five fold increase in coronary artery disease
 - Shortened life span by 10 to 20 years

- DM accounts for $246 billion in total health care related costs in USA
 - Up 41% in 5 yrs
Considerations For Selecting Agents For Prevention And New Onset Trials

- Benefit suggested by:
 - Animal models
 - Human trials in related autoimmune disease, or transplant

- Mechanism likely to be effective
 - Targets T-cells

- Safety of intervention established

- Ideal therapies are those that do not require continuous use, are tolerizing

The Honeymoon

- Re-visitation of natural history studies given
 - Improvement in glycemic control over time
 - Change in HLA distribution
 - Increase in BMI

- Recent studies suggest slower decline with measureable C-peptide long after diagnosis
 - 10-15% of teens and adults still have clinically significant insulin production > 5 yrs after DM onset (DCCT, 1993)
 - Medalist study: 2/3’s with measurable insulin > 50 yrs after dx (King, Diabetes, 2010)
 - Butler autopsy studies
Comparison Of Anti-CD3 Dose Regimens Across Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Anti-CD3 Dose</th>
<th>Dosing Duration</th>
<th>Achieve Primary Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1/2 Herold, 2005 Diabetes</td>
<td>17 mg teplizumab</td>
<td>Single 14-day course</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase 2 AbATE Herold, 2013 Diabetes</td>
<td>17mg teplizumab x 2</td>
<td>Two 14-day courses 12 months apart</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase 3 Protégé Sherry, 2011 Lancet</td>
<td>17mg teplizumab x 2</td>
<td>Two 14-day courses 6 months apart</td>
<td>No • Primary Endpt • Pt population</td>
</tr>
<tr>
<td>Phase 2 Keymulen, NEJM 2008</td>
<td>48 mg otelixizumab</td>
<td>Single 8-day course</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase 3 DEFEND Aronson, 2014 Diabetes Care</td>
<td>3.1 mg otelixizumab</td>
<td>Single 8-day course</td>
<td>No • Used 1/15th dose</td>
</tr>
</tbody>
</table>

Study To Arrest Type 1 DM (START Trial): ATG Alone

![Graph showing C-Peptide AUC (nmol/L) over time](image)

- **Treatment Group:**
 - ATG
 - Placebo

- **C-Peptide AUC (nmol/L):**
 - Screening
 - Month 6
 - Month 12

- **P-value:** 0.59

Gitelman et al. Lancet D&E 2013; 1:306-316
Study To Arrest Type 1 DM (START Trial): ATG Alone

![Graph showing C-Peptide AUC (nmol/L) over time for ATG and Placebo groups.]

- ATG alone:
 - Screening
 - Month 6
 - Month 12

The Balance of Pathogenic Effector T Cells and Regulatory T Cells in Healthy Persons versus Imbalances in Persons with Pathologic Conditions.

> IL-2 is vital for Tregs generation and survival, means to boost Tregs in vivo

The Balance of Pathogenic Effector T Cells and Regulatory T Cells in Healthy Persons versus Imbalances in Persons with Pathologic Conditions.
Augmenting Tregs

- ITN Phase 1 study with IL-2 plus Rapamycin in recent onset T1DM
 - Supported by NOD mouse studies
 - IL-2 can induce Tregs, but also Teffectors, NK and eosinophils
 - Rapamycin can keep effectors in check
 - Phase 1 trial for adults with longer standing type 1 DM

Change in β-cell function with rapamycin/IL-2 combination therapy.

• Not clear if IL-2 dosing +/- Rapamycin that caused issues
• Attempts to use lower dose IL-2, or mutants
 – Trials from Klatzmann, Waldrup-Lynch