Updates in Interventional Pulmonary Medicine
Eric J. Seeley, MD, FCCP
Director of Bronchoscopy and Interventional Pulmonary Medicine
Division of Pulmonary/CCM
Department of Internal Medicine
UCSF School of Medicine

Learning Objectives
- Who is an Interventional Pulmonologist?
- What are the tools?
- What can we diagnose?
- What can we treat?

Brief History of IP
- 1897 – Dr. Gustave Killian performs a rigid bronchoscopy to remove a bone from the mainstem bronchus of a patient
- 1966 – Dr. Skigeto Ikeda – Japan – first flexible bronchoscopy

Brief History of IP
- 1897 – Dr. Gustave Killian performs a rigid bronchoscopy to remove a bone from the mainstem bronchus of a patient
Who becomes an Interventional Pulmonologist?

• Most did a residency in internal medicine
• Then a fellowship in Pulmonary CCM
• And then a formal or informal fellowship in Interventional Pulmonary Medicine
• This is a non-ACGME fellowship
• Evolving board exam, but not required

What does an Interventional Pulmonologist do?

• It depends on their tools
• In general involved in the work-up and diagnosis of thoracic malignancies
• Also involved in therapy
 – Airway Recanalization
 – Tumor Ablation
 – Fiducial placement
• Tools offer access to:
 – Pleural Space, Airways, Lung Parenchyma

What are the tools?

Traditional Bronchoscopy

Anatomic Considerations

17-25 generations
Trachea 20-25 mm
Mainstem 12-16 mm
Segmental 5-8 mm

Therapeutic scope 5.8 mm
Diagnostic 5.2 mm OD
Traditional Bronchoscopy

Anatomic Considerations
17-25 generations
Trachea 20-25 mm
Mainstem 12-16 mm
Segmental 5-8 mm
Therapeutic scope 5.8 mm
Diagnostic 5.2 mm OD

But there is so much more...LNs

Traditional Bronchoscopy

Anatomic Considerations
17-25 generations
Trachea 20-25 mm
Mainstem 12-16 mm
Segmental 5-8 mm
Therapeutic scope 5.8 mm
Diagnostic 5.2 mm OD

But there is so much more...nodules
Endobronchial Ultrasound (EBUS)

But there is so much more... LNs
EBUS

EBUS – Image with Doppler

EBUS – Image with Doppler

Mediastinoscopy?
What LNs are accessible?
Endobronchial Ultrasound

– Obtain tissue from enlarged LNs
 • cancer, sarcoid, lymphoma, granulomatous infections
– Allows for LN staging for lung cancer
– Can place fiducials for XRT
– Can be performed at the same time as EMN
– Come and go procedure
– Can deliver Ampho to Aspergillomas
– Can obtain enough tissue for molecular diagnostics

EMN(B)
(electromagnetic navigation bronchoscopy)

EBUS-Therapeutic options.

Comparable to GPS in the lungs
EMN- case illustration

- 57 yo man of Japanese ancestry
- Presented with respiratory symptoms including cough
- Found to have a 1.2 cm nodule in lung
- Mildly PET positive
- Recommended lobectomy
- Small hilar lymph nodes
EMN (electromagnetic navigation bronchoscopy)

- Performed through ETT (fluoro vs. OR)
- Can biopsy lesions almost anywhere in the lung down to 5 mm in size
- Can biopsy, place fiducials, dye for localization
- Easily combined with EBUS for full staging
- Overlap with CT-FNA, if touching pleura or no “easy airway” would send for CT-FNA
- Faster diagnosis and staging with combined EMN/EBUS
68 yo smoker with severe emphysema
High risk TTNA
Not a surgical candidate

1. Tissue DX with EMN
2. Staging with EBUS
3. If EBUS is negative fiducials could be placed for XRT

68 yo smoker with severe emphysema
High risk TTNA
Not a surgical candidate

1. Tissue DX with EMN
2. Staging with EBUS

Rigid Bronchoscopy
Rigid Bronchoscopy - Why would we do this?

- Requires Jet Ventilation
- Allows more stable access to distal trachea
- Allows access for larger tools
- Provides opportunity to remove large objects (tumor, foreign body)
- Provides access for advanced airway tools

Cryotechnologies

- **Contact**
 - Cryoprobe
 - Freezes to -90
 - Cryogen is NO₂ or CO₂
 - Adheres to everything
 - Good for:
 - Tumor extraction
 - Foreign body extraction
 - Parenchymal lung biopsy?

Cryoprobe extraction: Case

Before

Cryoprobe extraction, cryospray, bronchoplasty
Cryoprobe extraction: Case

Before

After

Cryoprobe extraction, cryospray, bronchoplasty

Cryotechnologies

- **Non Contact**
 - Cryospray
 - Usually via Rigid Bronch
 - Obviates need for stent
 - Gas expands 700 x
 - risk of barotrauma
 - Cools to -196 F
 - Can be combined with bronchoplasty or cryoprobe extraction of airway tumor
 - ECM resistant to cryo-injury due to lower water content

Bronchial Thermoplasty (BT)

Castro et al AJRCCM 2010

- **Bronchial Thermoplasty for Severe Asthma**
 - 3 Procedures, 3 weeks apart
 - Deliver Thermal Energy to airway smooth muscle
 - Most common side effect is asthma exacerbation
 - Unclear which population might benefit most
Trials in IP

• Endobronchial Lung Volume Reduction
 – Lung volume reduction coils
 – Lung volume reduction valves

• Endobronchial Valves for BPF

RePneu Trial for Emphysema

• PneumRx – coils for LVRC in emphysema
• RCT finished
• Now entering cross over

PulmonX – Lung Volume Reduction for Emphysema – LIBERATE TRIAL

* Requires screen for colateral ventilation before insertion of valve

Spiration trial for BPF (VAST)

• Compassionate use for BPF
Conclusions

• IP allows for access to lung beyond the optical reach of a traditional bronchoscopy
• Can be used for the diagnosis, staging and therapy in lung cancer
• Advanced tools allow for extraction/ablation of airway tumors
• New tools may provide additional options for asthma, emphysema, BPF

Questions?