Chronic Traumatic Encephalopathy & FTD

Bruce L. Miller, MD
A.W. and Mary Margaret Clausen Distinguished Professor in Neurology
Director, Memory and Aging Center
Joint Appointment in Psychiatry
UCSF School of Medicine

Feb 12, 2015

Research Support

- NIA
- FTLD Program Project Grant, "Genes, Images Emotions", (P01)
- Alzheimer’s Disease Research Center (P50)
- T32 & K08/23 Training Grants
- NINDS
- iPSC derived neurons in FTD (Yadong Huang, Fen Biao-Gao)
- AAN Fellowships
- Philanthropy
 - Consortium for Frontotemporal Research
 - Tau Consortium
 - Hellman family
 - Hillblom & John Douglas French Foundation
- Many, many brilliant Foreign Scholars

Overview

- TBI – risk for dementia
- CTE – overview and NFL players
- FTD
 - Overview
 - Key to diagnosis
 - Misdiagnosis
 - Criminality
 - Slow FTD
 - Genetics, Imaging, Treatment
TBI: Growing Epidemic?

- 1.6 to 3.8 sports-related concussions/year
- Headache, dizzy, nausea, foggy, confusion, emotional instability, amnesia
- Mild concussion 2–14 days
- Neuropsychological function within 5 days back to normal
- Chronic repetitive injury—“chronic traumatic encephalopathy”

General Principles

- Brain regions sit against bone most vulnerable
 - Temporal (memory, behavior)
 - Frontal—drive, inhibition, mood
- Shearing of white matter (strich injury)
 - Cognitive deficits
 - Emotional deficits
 - Motor deficits
- Static injury
 - Slow healing

Risk Rate Previous Minor TBI

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>AD</th>
<th>PD</th>
<th>Depression</th>
<th>Mixed affective</th>
<th>Bipolar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perry et al submitted

Traumatic Brain Injury & Cognitive Impairment

TBI increases risk of cognitive aging

Case Control Head Injury & AD Risk Fleminger et al, JNPP, 2003
Cohort Study TBI & Dementia

- 188,764 U.S. veterans age ≥55 dementia free

Measures
- TBI diagnoses during baseline (ICD-9)
- Dementia diagnoses during 9 years follow-up
- TBI: 0.65% (N=1229)
 - Intra-cranial injury: 43%
 - Skull fracture: 21%
 - Late effect of head injury: 14%
 - Post-concussion syndrome: 4%
 - Unspecified head injury: 27%

Barnes…Yaffe, Neurology, 2014

TBI Severity Risk Dementia

Barnes…Yaffe, et al Neurology, 2014

Summary

- TBI 60% increase risk of dementia
- Age of dementia onset 2 years earlier in TBI compared to those without TBI
- Additive association observed between TBI and other dementia risk factors
- Older adults with blast-related injuries may need additional study

Dementia Pugilistica

- 1928 Martland “punch-drunk” repeated head blows
- 1937 Millspaugh coined “dementia pugilistica”
- 1962 Corsellis “psychopathic deterioration boxers”
- 1973 Corville 3 stages
 - 1st stage: affective disturbances, psychotic symptoms, social instability, erratic behavior
 - 2nd stage: memory loss and mild PD
 - 3rd stage: dementia, PD, shuffling gait, dysarthria, dysphagia and ocular abnormalities.
CTE

- Clinical symptoms begin long latency—several years to several decades.
- Initial: irritable, impulsive, aggressive, disinhibited, depressed, amnesia, suicide
- Later: slow cognitive deficits to dementia
- Incidence?
- 321 football players died 2008–2010, 12 had autopsy at BU; 12 had CTE.

McKee, Daneshvar, Alvarez & Stein 2014
Stein, Alvarez & McKee 2014

Serum & CSF Biomarkers Trauma

- Hockey players: serum alpha-pectrin-n-terminal fragment ↑1 hr post-concussion.
 - ↑12 hrs - 6 days, 20 players withheld play > 6 days, SNTF levels rose 12-36 hrs higher than less severe concussions (p=.004). (Siman J Neurotraum 2014)
- Serum levels tau-C higher post-concussion samples. (Siman J Neurotraum 2014)
- CSF neurofilament-derived protein ↑80% Olympic boxers post-bout (Neselius et al PLOS 2012-14)

McKee, Daneshvar, Alvarez & Stein 2014
Stein, Alvarez & McKee 2014

Aβ Imaging in TBI

Hong et al., JAMA Neurology 2013
UCSF NFL Cohort

UCSF MAC NFL Cohort

- 20 retired professional American football players evaluated to date
 - 19 symptomatic, 1 asymptomatic
 - FDG and Amyloid PET being obtained on players

3 Clinical Phenotypes

1. Chronic post-concussive syndrome
2. Delayed-onset behavioral syndrome
3. Delayed-onset cognitive/motor syndrome

1: Chronic Post-Concussive Syndrome

- 33 M 6 yrs forgetful, severe migraines, onset halfway into 8-yr NFL career, early retirement
- Also irritability, depression, insomnia
- Variable attention, low-avg episodic memory, impaired phonemic fluency
- MRI brain unremarkable
- Improved with aggressive migraine treatment
- After 2 years, migraine well-controlled, but cognitive symptoms worse & new symptom brief confusional episodes AM awakening
2: Delayed-Onset Behavior Syndrome

- 65M 8 yrs rage attacks triggered by EtOH, onset 27 years after retirement from football
- Also mild depression, insomnia, moderate parkinsonism, fine postural hand tremor
- Impaired verbal fluency, false positive rate on delayed verbal memory recognition
- Inpatient EEG normal, lamotrigine resolved rage attacks despite continued EtOH use
- After 2 years, cognitive symptoms worse and patient meets criteria for mild dementia

3: Delayed-Onset Cognitive Syndrome

- 73M, 2 yrs difficulty short-term memory, word-finding, navigation, multi-tasking, onset 34 years after retirement.
- Mild depression, insomnia, mild parkinsonism, no tremor
- Impaired episodic memory, working memory, spatial localization
- No improvement cholinesterase-inhibitor
- Over 2 years, progressed MCI to dementia

3: Amyloid Neg, APOE E3/E3

- MRI hippocampal & mammillary body atrophy, CSP
- FDG-PET medial temporal & parietal hypometabolism
- Amyloid-PET

Case 2

MRI
4: Delayed-Onset Cognitive Syndrome

- 51M 3 yrs trouble **spatial skills, calculation, problem-solving**, 25 years after retirement
- Irritability, anxiety, insomnia, tremor
- Bad working memory, spatial skills, normal episodic memory, “d” fluency
- Improved cholinesterase-inhibitor
- After 1 year, stable diagnosis of MCI

Case 4: Amyloid Pos, APOE E3/E4

MRI: mild parietal atrophy, CSP, patchy periventricular WM

FDG-PET: posterior cingulate, precuneus, parietal hypometabolism

Amyloid-PET

5: 68 Retired NFL Slow Neurologic Decline

At risk CTE Aβ PET ([11C]PIB)

At risk CTE Tau PET ([18F]AV1451)

Mean controls Tau PET ([18F]AV1451)

Concussion, Post-concussion Syndrome, CTE & Neurodegeneration

Symptom overlap

Pathological overlap

Tartaglia et al 2014
Ongoing Questions
- Relationship AD, FTD, PSP/CBD, ALS
- Can we prevent in traumatic sports?
- Are there other factors
 - Obesity
 - Sleep apnea
 - Steroid use
 - Drugs, alcohol, chronic pain meds
- What is role of anti-tau therapies

Conclusions
- CTE lurking epidemic: tau as major target
- Tau PET will have high impact
- Tau therapies are underway
- Need more research

Overview
- FTD clinical syndrome predicts pathology
- Best predictors bvFTD (n=206) vs. AD (n=678) across stages dementia (CDR)
 - Behavior
 - Executive control
- FTD misdiagnosis: under and over diagnosis - 3578 charts: 19% bvFTD
- Criminal behavior and FTD
- Slow FTD
- Genetic FTD—the early stages & tau PET
- Clinical basic science consortia

Arnold Pick
Aphasia in dementia, 1892
Pick body (Alzheimer), 1911
3 types frontotemporal dementia

- Behavioral variant
- Language variants
 - Semantic variant
 - Nonfluent variant

Strongly genetic, Multiple pathologies: TDP43, Tau, FUS

Rarely genetic Usually TDP-C, Autoimmune?

Usually Tau or TDP-A

International bvFTD Research Criteria

1. Early (2–3 yrs) behavioral disinhibition
2. Early (2–3 yrs) apathy or inertia
3. Early (2–3 yrs) loss of emotional reactivity/sympathy & empathy
4. Perseverative, stereotyped or compulsive/ritualistic behavior
5. Hyperorality and dietary changes
6. FTD neuropsychological profile
7. Frontal and/or anterior temporal atrophy on MRI
8. Presence of known mutation

Regions Involved Emotion, Reward, Social Cognition

- Insula
- Anterior Cingulate
- Amygdala
NPI bvFTD & AD by Stage
Neuropsychiatry symptoms across clinical dementia rating (CDR) in bvFTD (206) & AD (678)

Ranasinghe & Rankin Submitted

Executive Control bvFTD vs AD

Performance executive tasks, emotion recognition increasing disease severity AD (n= 678) vs bvFTD (n=206)

Ranasinghe & Rankin submitted

Psychiatric Misdiagnosis
Rates of Psychiatric Diagnosis within Each Neurodegenerative Dx

Correctly Dx vs Misdiagnosed

UCSF not bvFTD
UCSF bvFTD

NPI subscore *:p<0.05 **:p<0.01

3578 Charts Shimagawa, Cattaroe, et al. under review
147 (60%) misdx
Amyloid PET Outperforms FDG-PET Differentiating AD vs. FTD

47 autopsy-proven cases
Amyloid (PIB) PET visual reads
100% sensitivity
90% specificity
FDG-PET visual reads
87% sensitivity
79% specificity

Criminality Across Diagnoses

<table>
<thead>
<tr>
<th>Clinical diagnosis</th>
<th>Total n</th>
<th>Frequency of criminality: n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bvFTD</td>
<td>171</td>
<td>64 (37.4%)</td>
</tr>
<tr>
<td>svPPA</td>
<td>89</td>
<td>24 (27%)</td>
</tr>
<tr>
<td>AD</td>
<td>545</td>
<td>42 (7.7%)</td>
</tr>
<tr>
<td>HD</td>
<td>30</td>
<td>6 (20%)</td>
</tr>
<tr>
<td>VaD</td>
<td>61</td>
<td>9 (14.8%)</td>
</tr>
<tr>
<td>PSP</td>
<td>63</td>
<td>4 (6.4%)</td>
</tr>
<tr>
<td>CBS</td>
<td>73</td>
<td>4 (5.5%)</td>
</tr>
<tr>
<td>MCI</td>
<td>243</td>
<td>8 (3.8%)</td>
</tr>
<tr>
<td>Other</td>
<td>1122</td>
<td>43 (3.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>2397</td>
<td>204 (8.5%)</td>
</tr>
</tbody>
</table>

Criminal Behavioral Classification in bvFTD, svPPA & AD

<table>
<thead>
<tr>
<th>bvFTD</th>
<th>svPPA</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.4%</td>
<td>27%</td>
<td>7.7%</td>
</tr>
<tr>
<td>early</td>
<td>early</td>
<td>late</td>
</tr>
<tr>
<td>sexual advances, theft, public urination, violence</td>
<td>theft, traffic violation</td>
<td>traffic violation, trespassing due to wandering</td>
</tr>
<tr>
<td>disinhibition, impulsivity, reward/punishment dysfunction</td>
<td>compulsive attraction to visual stimuli, disinhibition</td>
<td>cognitive dysfunction</td>
</tr>
<tr>
<td>anterior insular, orbitofrontal, ventral striatum</td>
<td>bilateral anterior temporal lobe, orbitofrontal, ventral striatum</td>
<td>hippocampus, parietal lobe</td>
</tr>
</tbody>
</table>

Main FTD Mutations

<table>
<thead>
<tr>
<th>Mutation</th>
<th>C9orf72</th>
<th>MAPT</th>
<th>GRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of DX</td>
<td>56</td>
<td>52</td>
<td>62</td>
</tr>
<tr>
<td>Clinical</td>
<td>FTD-ALS</td>
<td>FTD, PSP, CBD</td>
<td>FTD, PA, AD, CBD</td>
</tr>
<tr>
<td>MRI</td>
<td>Mild, dorsal, occipital, cerebellar</td>
<td>Classical frontotemporal</td>
<td>Asymmetric frontotemporal</td>
</tr>
<tr>
<td>Unique clinical</td>
<td>ALS, thalamic</td>
<td>Symmetry, addiction</td>
<td>Overlap with AD</td>
</tr>
<tr>
<td>Unique biology</td>
<td>RNA-mediated</td>
<td>4r tauopathy</td>
<td>Haploinsufficiency, Links to AD?</td>
</tr>
</tbody>
</table>
How Many *Individuals* Do You Follow with fFTLD or a Related Disorder?

Genetic FTD: Early Changes

- Selfishness
- Passivity/withdrawal, social isolation
- Aggression/antisocial behaviors
- Alcohol, drug & other addictions
- Compulsions (sometimes creative ones)
 - Art
 - Business
- Odd affiliations (changes in self)
- Loss of empathy for others

Early Psychiatric Diagnoses

- Bipolar illness
- Schizophrenia
- Major Depression
- Addiction Disorder (multiple types)
- Personality Disorders
 - Borderline
 - Passive-aggressive
 - Dissociative syndrome
 - Antisocial
 - Schizoidal
 - Schizotypal

Slow bvFTD (bvFTD Phenocopy)

- Mild bvFTD syndrome
- Slow or minimally progressive
- Neuropsychological function can be normal
- MRI normal
- Primary psychiatric?
VBM (tissue loss) bvFTD Phenocopy

Khan et al. JNNP 2012

Abnormalities Medial Pulvinar Thalamus Associated Salience Network Disruption C9orf72+ bvFTD

Lee S E et al. Brain 2014

Tau Consortium 2014

PSP Dorsal Midbrain Tegmental Network

AV1451 PET

Functional Connectivity

Gardner et al. Ann Neurol 2013
Tau Spreads Like a Prion

Immunostain Neurons (42 Days) Derived from Isogenic Tau-A152T-hiPSCs

Tau Clearance

Therapeutic Approaches 2015

- Tau antibody for PSP & other tau forms of FTD (David Holtzman)
- Decrease acetylation, phosphorylation tau or increase clearance of tau (Ana Maria Cuervo)
- NIFTD & 4RTNI finish (good biomarkers for trials) (Howard Rosen, Adam Boxer)
- Tau imaging agents (Gil Rabinovici, Bill Jagust)
Trans-cellular propagation of Tau

Aggregation occurs via transfer fibrils within cell medium

Tau propagation model:
- protein aggregate donor cell escapes cell (A),
- enters recipient cell (B),
- directly contacts natively folded protein (C) amplify the misfolded state (D)
- cell-cell movement mediated by fibrils released into the medium
- fibrils in extracellular space targeted by anti-tau antibody

Holtzman & Diamond
Genetic Families: MAC Cohorts

<table>
<thead>
<tr>
<th>Gene in Family</th>
<th>Kindred</th>
<th>Carriers</th>
<th>Non-Carriers</th>
<th>Individual untested</th>
<th>Total Individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9ORF72</td>
<td>38</td>
<td>74</td>
<td>18</td>
<td>11</td>
<td>103</td>
</tr>
<tr>
<td>GRN</td>
<td>24</td>
<td>46</td>
<td>29</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>MAPT</td>
<td>9</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>TDP-43</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

We have 11 carriers with the rare variant $MAPT_A152T$

bvFTD Misdiagnosis

- Alzheimer’s disease (CSF, amyloid imaging)
- Primary psychiatric diagnosis (MRI)
- Movement disorders (SCAs)
- Prion disorders (MRI)
- CTE (take trauma history seriously)
- Normal/low pressure syndromes (MRI)
- Metabolic syndromes (B12)
- Vascular dementia (MRI)
- Mixed pathology
- Immune-related