Community-Acquired Pneumonia (CAP) - Outline

- Epidemiology
- Diagnosis
- Microbiology
- Risk stratification
- Treatment
- Prevention
Community-Acquired Pneumonia

- Talk will focus on adults

Epidemiology:
Acute Lower Respiratory Tract Infections

- In U.S., influenza and pneumonia 8th most common cause of death per the Centers for Disease Control and Prevention (moved up from 9th in 2010)
 - Most common cause of death from infectious disease
- Among those 85 and older, at least 1 in 20 hospitalized each year
Epidemiology:
Acute Lower Respiratory Tract Infections

- Inpatient mortality rate: may be influenced by coding
 - From 2003 – 2009, mortality rate for principal diagnosis pneumonia decreased from 5.8% to 4.2%
 - More patients coded with principal diagnosis sepsis or respiratory failure and secondary diagnosis pneumonia
 - Using all codes, little change in mortality rate

 Lindenauer et al, JAMA 2012;307:1405-13

- Outpatient mortality < 1%; about 80% of CAP treated in outpatient setting

Diagnosis

- Chest radiograph – needed in all cases?
 - Avoid over-treatment with antibiotics
 - Differentiate from other conditions
 - Specific etiology, e.g. tuberculosis
 - Co-existing conditions, such as lung mass or pleural effusion
 - Evaluate severity, e.g. multilobar

- Unfortunately, chest physical exam not sensitive or specific and significant variation between observers

Arch Intern Med 1999;159:1082-7
Microbiological Investigation

- **Sputum Gram stain and culture**
 - 30-40% patients cannot produce adequate sample
 - Most helpful if single organism in large numbers
 - Usually unnecessary in outpatients
 - Culture (if adequate specimen < 10 squamous cells/LPF; > 25 PMNs/LPF): antibiotic sensitivities
 - Limited utility after antibiotics for most common organisms

Microbiological Investigation - Inpatients

- **Blood cultures x 2 before antibiotics**
 - Blood cultures positive in 5 – 14% of hospitalized patients
 - Severe disease most important predictor
- **Consider evaluation for Legionella**
 - Urinary antigen test for *L. pneumophila* serogroup 1 (70%)
 - Culture with selective media
- **Pneumococcal urinary antigen test**
 - Simple, takes apx. 15 minutes
 - In adults, sensitivity 50-80%, specificity ~90% but specificity poor in children, possibly due to carriage
Microbiological Investigation - Inpatients

- Other studies as clinically indicated, e.g. influenza
- Multiplex PCR systems, e.g. BioFire
- Serology not typically used clinically but may be useful for public health
- Bronchoscopy perhaps for fulminant course, unresponsive to conventional therapy, or for specific pathogens (e.g. *Pneumocystis*)
Other diagnostics?

- Biomarkers - procalcitonin
 - Procalcitonin is produced in response to endotoxin and endogenous mediators released in the setting of bacterial infections
 - Rises in bacterial infections much more than, e.g., viral infections or inflammatory states
 - Rises and falls quickly
- Unfortunately, probably not sensitive / specific enough to rule out / rule in bacterial CAP in individual cases in most settings
 - May help limit duration of antibiotic exposure

BMC Medicine 2011;9:107

Etiology – historical data

- Clinical syndrome and CXR not reliably predictive
 - Streptococcus pneumoniae 20-60%
 - Haemophilus influenzae 3-10%
 - Mycoplasma pneumoniae up to 10%
 - Chlamydophila pneumoniae up to 10%
 - Legionella up to 10%
 - Enteric Gram negative rods up to 10%
 - Staphylococcus aureus up to 10%
 - Viruses up to 10%
 - No etiologic agent 20-70%
CAP Surveillance Study

- Adults hospitalized with CAP at 5 hospitals in Chicago and Nashville
- Extensive diagnostic testing done via culture, serology, antigen testing, and molecular diagnostics
- A pathogen was detected in only 38% of patients with specimens available
 - Viruses 62%
 - Bacteria 29%
 - Bacteria and virus 7%
 - Fungus or mycobacteria 2%

NEJM 2015;373:415-27

Typical vs. Atypical

Typical
- Visible on Gram stain, grows in routine culture
- Susceptible to beta lactams
- *S. pneumoniae, H. influenzae*

Atypical
- Not visible on Gram stain, special culture techniques
- Not treated with beta lactams
- *M. pneumoniae, C. pneumoniae, Legionella*
S. pneumoniae

- Risk factors

 - Extremes of age
 - Alcoholism
 - COPD and/or smoking
 - Nursing home residence
 - Influenza
 - Injection drug use
 - Airway obstruction
 - HIV infection

Legionella

- Think about with severe disease, high fever, hyponatremia, markedly elevated LDH, CNS abnormalities
- Fluoroquinolone or azithromycin drug of choice; usual rx 14-21 days
- Risk factors:
 - Older age
 - Smoking
 - Immune compromise, cell mediated
 - Travel
 - Renal disease
 - Liver disease
 - Diabetes
 - Malignancy
Mycoplasma pneumoniae

- Common cause respiratory infections in children/young adults
 - Pneumonia relatively uncommon
- Epidemics in close quarters
- May have sore throat, nausea, vomiting, hemolytic anemia, rash
- Treatment with doxycycline, macrolide, or fluoroquinolone
 - Rising rate of macrolide resistance – U.S. 8.2%; China 90%

Pediatr Infect Dis J 2012;31:409-11

Risk Stratification

- Outpatient vs. inpatient?
 - Cost
 - Patient satisfaction
 - Safety
Risk Stratification

- Outpatient vs. inpatient?
 - Pneumonia Patient Outcomes Research Team (PORT) study (Fine et al, NEJM 1997;336:243-250)
 - Prediction rule to identify low risk patients with CAP
 - Stratify into one of 5 classes
 - Class I: age ≤ 50, none of 5 co-morbid conditions, apx. normal VS, normal mental status
 - Class II-V: assigned via a point system

Risk Stratification

- Mortality < 1% for classes I, II
- Low risk patients hospitalized more than necessary
- Caveats:
 - Does not take into account social factors
Pneumonia Severity Index Calculator

Age and sex; resident of nursing home {yes/no}

Comorbid diseases {yes/no}: renal disease, liver disease, CHF, cerebrovascular disease, neoplasia

Physical exam {yes/no}: altered mental status, SBP < 90, temp < 35 or >=40, RR>=30, HR>=125

Labs/studies {yes/no}: pH<7.35, PO2<60 or Sat<90, Na<130, HCT<30, gluc>250, BUN>30, pleural eff

Patient #1

- 60 year-old man with diabetes presents with fever and dyspnea. Positive PORT items include HR=130, Na=129, glucose=300.

- Should this patient be hospitalized?

Please vote:
1. Yes
2. No
Pneumonia Severity Index Results

Class: IV
Score: 100

<table>
<thead>
<tr>
<th>Risk</th>
<th>Class</th>
<th>Score</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>I</td>
<td>< 51</td>
<td>0.1%</td>
</tr>
<tr>
<td>Low</td>
<td>II</td>
<td>51 - 70</td>
<td>0.6%</td>
</tr>
<tr>
<td>Low</td>
<td>III</td>
<td>71 - 90</td>
<td>0.9%</td>
</tr>
<tr>
<td>Medium</td>
<td>IV</td>
<td>90 - 130</td>
<td>9.5%</td>
</tr>
<tr>
<td>High</td>
<td>V</td>
<td>> 130</td>
<td>26.7%</td>
</tr>
</tbody>
</table>

Hospitalization is recommended for class IV and V. Class III should be based on clinical judgment.

Patient #2

55 year-old woman with no other risk factors? Hospitalization? Please vote:

1. Yes
2. No

Class : II
Score : 45
Mortality : 0.1%
Patient #3

92 year-old man with no other risk factors?
Hospitalization? Please vote:

1. Yes
2. No

Class : IV
Score : 92
Mortality : 9.5%

Patient #4

20 year-old woman with SBP < 90 and a pleural effusion?

Hospitalization? Please vote:
1. Yes
2. No

Class : II
Score : 40
Mortality : 0.6%
Other Scoring Systems

- **CURB-65 (British Thoracic Society)**
 - Has only 5 variables, compared with 20 for Pneumonia Severity Index
- **Severe Community Acquired Pneumonia (SCAP)**
 - Has 8 variables
- **SMART-COP**
 - Used for predicting need for mechanical ventilation or vasopressors

Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults

Clinical Infectious Diseases; March 1, 2007
Supplement 2
Update in progress: projected spring 2018
Is coverage of “atypical” organisms important?

- In Europe, amoxicillin commonly used as a single drug with data supporting a short course (3 days in responding patients)

 el Moussaoui et al, BMJ 2006;332:1355 - 62

- Some studies show no benefit of empirical atypical coverage on survival or clinical efficacy in hospitalized patients

Original Investigation

Association of Azithromycin With Mortality and Cardiovascular Events Among Older Patients Hospitalized With Pneumonia

- V.A. retrospective, cohort study of patients 65 and older hospitalized with pneumonia 2002-2012
- 31,863 patients treated with azithromycin compared with 31,863 propensity matched patients with no exposure
- 90 day mortality significantly lower 17.4% vs. 22.3%, O.R. 0.73
- Myocardial infarct significantly higher 5.1% vs. 4.4%, O.R. 1.17

JAMA 2014;311(21):2199-2208
Cluster-randomized trial in 7 hospitals in the Netherlands with rotating strategies
Adults with CAP not requiring ICU
Beta-lactam alone (656 patients) vs. beta-lactam plus macrolide (739 patients) vs. fluoroquinolone alone (888 patients)
Primary outcome 90-day mortality: beta-lactam monotherapy non-inferior to other strategies
No difference in length of stay or complications

Outside the ICU...we love doxycycline
- Adult inpatients June 2005 – December 2010
- Compared those who received ceftriaxone + doxycycline to those who received ceftriaxone alone
- 2734 hospitalizations: 1668 no doxy, 1066 with doxy
- Outcome: CDI within 30 days of doxycycline receipt
- CDI incidence 8.11 / 10,000 patient days in those receiving ceftriaxone alone; 1.67 / 10,000 patient days in those who received ceftriaxone and doxycycline

Doernberg et al, Clin Infect Dis 2012;55:615-20
Empirical Treatment: IDSA/ATS Consensus Guidelines

Outpatient treatment
- Previously healthy, no antibiotics in 3 months
 - Macrolide (1st choice) or
 - Doxycycline
- Co-morbid conditions or antibiotics within 3 months (select a different class)
 - Respiratory fluoroquinolone: moxifloxacin, gemifloxacin, or levofloxacin (750 mg)
 - Beta-lactam (especially high dose amoxicillin) plus a macrolide (1st choice) or doxycycline

Empirical Treatment: IDSA/ATS Consensus Guidelines

Inpatient treatment, non-ICU
- Respiratory fluoroquinolone or
- Beta-lactam (cefotaxime, ceftriaxone, ampicillin; consider ertapenem) plus a macrolide (1st choice) or doxycycline
Empirical Treatment:
IDSA/ATS Consensus Guidelines

Inpatient treatment, ICU

- Beta-lactam (cefotaxime, ceftriaxone, or ampicillin-sulbactam) plus
- Azithromycin or a respiratory fluoroquinolone

➢ For penicillin allergy: respiratory fluoroquinolone + aztreonam

Empirical Treatment:
IDSA/ATS Consensus Guidelines

For suspected *Pseudomonas aeruginosa*:

- Antipneumococcal, antipseudomonal beta-lactam (piperacillin-tazobactam, cefepime, imipenem, or meropenem) plus either ciprofloxacin or levofloxacin (750 mg) Or
- The above beta-lactam plus an aminoglycoside and either azithromycin or a respiratory fluoroquinolone
 ➢ For penicillin allergy: substitute aztreonam for the beta-lactam

Suspect with structural lung disease (e.g. bronchiectasis), frequent steroid use, prior antibiotic therapy
Empirical Treatment: IDSA/ATS Consensus Guidelines

Inpatient therapy, concern for community methicillin-resistant *Staphylococcus aureus* (MRSA):

- Add vancomycin or linezolid to regimen you would select otherwise

Consider for patients admitted to the ICU – obtain Gram strain of respiratory specimen (sputum or tracheal aspirate)

What about steroids?

- Randomized, double blind trial in Switzerland
- 785 adult inpatients received 50 mg prednisone daily x 7 days or placebo
- Primary outcome clinical stability: 3.0 days prednisone vs. 4.4 days placebo, p<.0001
- Time to hospital discharge 6 days prednisone vs. 7 days placebo, p=.01
- No difference complications except slightly higher in-hospital hyperglycemia with prednisone
Questions re study

- 2911 patients assessed to randomize 802
- Why was length of stay so long?
 - 4% prednisone and 6% placebo admitted to ICU
 - Death from any cause 4% prednisone and 3% placebo

What about steroids?

- Multicenter, double-blind, RCT at 3 hospitals in Spain
- Adults with severe CAP (75% in ICU)
- Methylprednisolone 0.5 mg/kg q 12h x 5 days (n=61) vs. placebo (n=59)
 - Recruited 2004 – 2012
- Primary outcome: treatment failure (composite) 13% vs. 31%, P=.02
 - Mortality 10% vs. 15%, P=.37

JAMA 2015;313(7):677-86
What about steroids?

• Systematic review and meta-analysis of steroids for patients hospitalized with CAP
• Included 13 RCTs with 2005 patients total
 • Both studies on previous slides included
• Outcomes:
 • Possible 2.8% reduction in mortality
 • 5% reduction mechanical ventilation
 • 1 day decrease hospital stay
 • 3.5% increase in hyperglycemia requiring treatment

 Ann Intern Med 2015;163(7):519-28

What about steroids?

• At least 2 multicenter trials in progress with data expected 2018-2019
 • ESCAPE: patients with severe CAP, VA hospitals, methylprednisolone
 • Recruitment completed
 • CAPE_COD: patients with severe CAP, French hospitals, hydrocortisone
 • Recruitment in progress

 https://clinicaltrials.gov/
Length of Therapy

- 7 – 10 days has been standard for most patients but probably not necessary
 - Shorter course with azithromycin or high dose levofloxacin
 - Meta-analysis that patients with mild to moderate disease can be treated with 7 days or less

Li et al. Am J Med. 2007;120(9):783-90

Switch to Oral Therapy

- Reduces costs, shortens length of stay, may reduce complications
- As soon as improving clinically, able to take POs, GI tract functioning
 - Usually within 3 days; no need to observe in hospital
- Narrow spectrum agent if organism identified (usually *S. pneumoniae*)
- Empirical therapy: macrolide, doxycycline, antipneumococcal fluoroquinolone, or combination therapy
Prevention

There are steps patients and providers can take....

- Vaccination
 - Influenza vaccine
 - Pneumococcal vaccines

- Smoking cessation
 - Smoking, with or without COPD, is a significant risk factor
HAP and VAP...

But, what happened to healthcare-associated pneumonia (HCAP)?
The HCAP Gap

Clin Infect Dis 2009;49(12):1868-74

Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society

• The concept of HCAP has been removed – why?
 • Increasing evidence that most patients with HCAP are not at high risk for resistant pathogens
 • Other features besides exposure to the healthcare system may be important
 • May be covered by new CAP guidelines
Practical tips for HCAP

- Most patients with “HCAP” can be treated like CAP
- Consider expanded initial therapy if
 - Severely ill
 - History of resistant organism or other risk factors such as extensive antibiotic exposure
- Knowledge of local flora/resistance patterns is helpful
- If using expanded therapy, prioritize microbiologic diagnosis
 - De-escalate based on results

2016 guidelines: take home points for both HAP and VAP

- Perform microbiologic testing – preferred over empirical therapy
 - Obtain non-invasively – expectorated, induced sputum, endotracheal aspirate
 - BAL, mini-BAL, protected-brush specimens not recommended
- Not recommended for decision to initiate therapy
 - Procalcitonin
 - C-reactive protein
 - CPIS score
- Most patients should be treated for 7 days
2016 guidelines: initial treatment of HAP (based on very low quality evidence)

- Use local pathogen and antibiotic resistance data
- Cover MRSA in selected patient
 - Prior IV antibiotics within 90 days
 - > 20 of S. aureus isolates on unit are MRSA
 - High risk of mortality
- Cover *Pseudomonas aeruginosa*
 - Double coverage of *P. aeruginosa* with risk factors
 - Prior IV antibiotics within 90 days
 - High risk for mortality

2016 guidelines: initial treatment of HAP (based on very low quality evidence)

- Not at high risk of mortality and no risk factors increasing likelihood of MRSA (cover MSSA and *P. aeruginosa*)
 - One of the following:
 - Piperacillin-tazobactam 4.5 g IV q 6h
 - Cefepime 2 g IV q 8h
 - Levofoxacin 750 mg IV daily
 - Imipenem 500 mg IV q 6h
 - Meropenem 1 g IV q 8h
2016 guidelines: initial treatment of HAP (based on very low quality evidence)

- Not at high risk of mortality but increased risk of MRSA:
 - Piperacillin-tazobactam 4.5 g IV q 6h
 - Cefepime 2 g IV q 8h
 - Levofloxacin 750 mg IV daily
 - Imipenem 500 mg IV q 6h
 - Meropenem 1 g IV q 8h
 - Aztreonam 2 g IV q 8h
 PLUS
 - Vancomycin 15 mg/kg IV q 8h-12h (goal trough 15 – 20) OR
 - Linezolid 600 mg IV q 12h

2016 guidelines: initial treatment of HAP (based on very low quality evidence)

- High risk of mortality or IV antibiotics with 90 days:
 - Antipsuedomonal beta lactam: piperacillin-tazobactam, cefepime, ceftazidime, aztreonam, imipenem, meropenem
 PLUS
 - A second antipseudomonal antibiotic: levofloxacin, ciprofloxacin, amikacin, gentamicin, tobramycin
 PLUS
 - Vancomycin or linezolid
2016 guidelines: initial treatment of VAP (based on very low quality evidence)

- Use local pathogen and antibiotic resistance data
- Do not treat ventilator-associated tracheobronchitis with antibiotics
- Cover *S. aureus*, *P. aeruginosa*, and other Gram-negative bacilli in all empirical regimens
 - Cover MRSA with vancomycin or linezolid when > 10 – 20% of *S. aureus* isolates in unit are MRSA
- Use two antipseudomonal antibiotics if
 - Prior IV antibiotic use within 90 days
 - Septic shock
 - ARDS preceding VAP
 - 5 or more days of hospitalization preceding VAP
 - > 10% of Gram negative isolates resistant to planned monotherapy
 - Susceptibility rates unknown

ZSFG HAP and VAP antibiotic guideline: initial therapy

- Mild HAP: ceftriaxone or ertapenem or levofloxacin
- Severe HAP (e.g. high O2 requirement, cavitary disease): vancomycin plus cefepime or piperacillin/tazobactam
- VAP, intubated ≤ 5 days without complications (e.g. multifocal or cavitary disease): ceftriaxone or ertapenem or levofloxacin
- VAP, intubated > 5 days or complicated: vancomycin plus cefepime or piperacillin/tazobactam