Optimizing Mortality Reductions through Colorectal Cancer Screening

Asian Health Symposium
San Francisco. October 2017

John M. Inadomi
Cyrus E. Rubin Chair and Head
Division of Gastroenterology
University of Washington

Colorectal Cancer Screening Agenda

- Which test is best?
- How to increase screening among Asians?
- How do you prepare for the future?

CRC Screening
U.S. Preventive Services Task Force
2016 Updated Guidelines

- Available Strategies:
 - Fecal occult blood testing annually*
 - Sigmoidoscopy
 - Every 5 years
 - Every 10 years with annual FOBT *
 - Colonoscopy every 10 years
 - FIT-DNA testing every 1 or 3 years
 - CT colonography every 5 years
 - Methylated Septin9 DNA (unknown interval)

*FIT or high-sensitivity gFOBT (Hemoccult Sensa)

CRC Screening
U.S. Preventive Services Task Force

- Start and Stop: Ages 50-75 years
 - 76-85 years: do not screen routinely
 - Older than 85 years: do not screen
- Starting at age 45 years
 - Could reduce cancer and increase life-years
 - Could increase harms of screening (colonoscopy)
- Individuals >75 years of age who have not previously undergone screening may still benefit
 - Depending on comorbid illness, could benefit past age 80 years
FIT Detection of CRC: Meta-Analysis

Fecal Occult Blood Test

- **Benefits**
 - High quality evidence supporting mortality reduction with FOBT (multiple RCTs)
 - FIT easier: single sample, no dietary exclusions
 - Highly cost-effective, may be cost-saving
- **Deficits**
 - Insensitive for cancer precursor (polyps)
 - Annual testing needed

Multitarget Stool (FIT-DNA)

- KRAS mutations
- NDRG4 and BMP3 methylation
- β-actin
- **Immunochromatographic test for human hemoglobin**
- FDA approved
- CMS reimbursed

Multitarget Stool vs. FIT

<table>
<thead>
<tr>
<th>Condition</th>
<th>Colonoscopy</th>
<th>Stool DNA sensitivity</th>
<th>FIT sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal Cancer</td>
<td>65</td>
<td>92.3 (83.0-97.5)</td>
<td>73.8 (61.5-84.0)</td>
</tr>
<tr>
<td>Advanced adenoma / SSP≥ 1cm</td>
<td>757</td>
<td>42.4 (38.9-46.0)</td>
<td>23.8 (20.8-27.0)</td>
</tr>
<tr>
<td>Non-advanced adenomas and negative colon</td>
<td>9167</td>
<td>86.6 (85.9-87.2)</td>
<td>94.9 (94.4-95.3)</td>
</tr>
<tr>
<td>Negative colon</td>
<td>4457</td>
<td>89.8 (88.9-90.7)</td>
<td>96.4 (95.8-96.9)</td>
</tr>
</tbody>
</table>

Multitarget Stool (FIT-DNA)

- **Benefits**
 - Sensitivity higher than FIT (92.3% vs. 73.8%)
 - FDA approved for primary screening of CRC
- **Deficits**
 - Specificity lower than FIT (86.6% vs. 94.9%)
 - Insensitive for cancer precursors (polyps)
 - Unknown screening intervals
 - Cost ($649 retail) – not cost-effective

Virtual Colonoscopy (CT Colonography)

Colonoscopy vs. CT Colonography

- Sessile serrated polyps
 - RCT colonoscopy vs. CT colonography
 - 8,844 participants
 - Diagnosis of high-risk SSP
 - ≥1 cm or any grade of dysplasia
 - OR 5.5 (95% CI 2.6-11.6)
 - CT inferior to colonoscopy for detection of SSP

J Gastroenterol 2013

IJSpeert Am J Gastro 2016
Adherence to CRC Screening

<table>
<thead>
<tr>
<th>Method</th>
<th>Participation Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonoscopy</td>
<td>14.8*</td>
</tr>
<tr>
<td>CTC Full prep</td>
<td>25.2*</td>
</tr>
<tr>
<td>CTC Reduced prep</td>
<td>28.1 (NS)</td>
</tr>
<tr>
<td>FIT</td>
<td>50.4*</td>
</tr>
</tbody>
</table>

Colonoscopy vs. CT Colonography

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case (CT $558)</td>
<td>Colon dominates CT</td>
</tr>
<tr>
<td>Cost of CT $100-480</td>
<td>Colon cost-effective</td>
</tr>
<tr>
<td>Cost of CT <$100</td>
<td>CT preferred</td>
</tr>
</tbody>
</table>

*Dominates = more effective and less expensive
Cost-effective = <$50,000 per life year saved
Preferred = ICER for Colon vs. CT >$50,000 per life year saved*
Virtual Colonoscopy

• Benefits
 – Cool name
 – May have greater adherence than colonoscopy

• Deficits
 – Inferior detection of sessile serrated polyps
 – Extracolonic findings in 16%
 – Radiation exposure
 – Not cost-effective compared with FIT or colonoscopy

Blood Based Test

Septin 9

• Gene codes for Guanosine triphosphate (GTP)-binding protein
 – Cytoskeleton formation and filamentous structure

• Oncogene or tumor suppressor gene
 – Methylated Septin 9 is a biomarker for CRC

• FDA approved for CRC screening
 – Individuals who refuse other tests

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>95% CI</th>
<th>Specificity</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal cancer</td>
<td>74.8%</td>
<td>67.0-81.6%</td>
<td>87.4%</td>
<td>83.5-90.6%</td>
</tr>
<tr>
<td>Advanced adenomas</td>
<td>27.4%</td>
<td>18.7-37.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenomas</td>
<td>20.7%</td>
<td>15.1-27.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How To Increase Screening
Adherence to CRC Screening

- Overall adherence 60% (stable since 2010)
 - 55% colonoscopy within 10 years
 - 5% FOBT within the previous year
 - <1% sigmoidoscopy within 5 years
- Large variations between racial/ethnic groups
 - Disparities vs. Differences
 - Access vs. Utilization

Adherence to CRC Screening Methods

- Design
 - Prospective quasi-experimental study
- Interventions:
 - Recommend FOBT
 - Recommend Colonoscopy
 - Choice of FOBT or colonoscopy
- Setting
 - Urban, diverse underserved population

Methods

- Subjects
 - Average risk for development of CRC
 - No family history of CRC
 - No personal history of CRC or adenomas, IBD
 - Not up-to-date with CRC screening
- Outcomes
 - Completion of screening strategy within one year
 - FOBT plus colonoscopy if positive
 - Colonoscopy

Study Design – Clinic Randomization

- General Medicine Clinic:
 - FOBT
 - Choice
 - Colonoscopy

- Family Health Center and Positive Health Program:
 - Colonoscopy
 - Choice
 - FOBT
Methods

- Goal of study: Identify patient factors associated with adherence
- Requirement: reduce systems/access barriers
 - One encounter
 - Language
 - Spanish, Cantonese, Mandarin, English
 - Capacity
 - < 2 week wait for colonoscopy
 - Cost
 - Healthy San Francisco
 - Support
 - Rides to / from hospital if necessary

Results

Subjects: 997 enrolled

Recommendation for Colonoscopy: Lower Adherence
Recommendation for Colonoscopy:

Lower Adherence

<table>
<thead>
<tr>
<th>FOBT</th>
<th>Colonoscopy (colonoscopy or FOBT)</th>
<th>Choice (regardless of intent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.2%</td>
<td>58.1%</td>
<td>68.8%</td>
</tr>
</tbody>
</table>

*p = 0.001

Arch Intern Med 2012

Overall Adherence Varies by Race

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>Adherent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>51.4%</td>
</tr>
<tr>
<td>White</td>
<td>64.9%</td>
</tr>
<tr>
<td>Asian</td>
<td>72.6%</td>
</tr>
<tr>
<td>Latino</td>
<td>69.5%</td>
</tr>
</tbody>
</table>

Arch Intern Med 2012

Factors Associated with Adherence

<table>
<thead>
<tr>
<th>Variable</th>
<th>Study Group</th>
<th>Univariate Analysis</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOBT Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonoscopy</td>
<td>193/332 (58)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOBT</td>
<td>231/334 (67)</td>
<td>1.50</td>
<td>1.08</td>
<td>2.06</td>
</tr>
<tr>
<td>Choice</td>
<td>221/321 (69)</td>
<td>1.61</td>
<td>1.16</td>
<td>2.24</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>90/177 (51)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>92/149 (62)</td>
<td>1.55</td>
<td>0.99</td>
<td>2.42</td>
</tr>
<tr>
<td>Asian</td>
<td>214/298 (72)</td>
<td>2.46</td>
<td>1.66</td>
<td>3.63</td>
</tr>
<tr>
<td>Latino</td>
<td>234/337 (69)</td>
<td>2.19</td>
<td>1.50</td>
<td>3.20</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>315/556 (57)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>190/240 (73)</td>
<td>2.12</td>
<td>1.53</td>
<td>2.95</td>
</tr>
<tr>
<td>Cantonese or Mandarin</td>
<td>138/175 (78)</td>
<td>2.72</td>
<td>1.82</td>
<td>4.08</td>
</tr>
</tbody>
</table>
Factors Associated with Adherence

<table>
<thead>
<tr>
<th>Variable</th>
<th>no./total no. (%)</th>
<th>Multivariable OR</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonoscopy</td>
<td>193/332 (58)</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>FOBT</td>
<td>231/344 (67)</td>
<td>1.44</td>
<td>1.03 – 2.02</td>
</tr>
<tr>
<td>Choice</td>
<td>221/321 (69)</td>
<td>1.66</td>
<td>1.18 – 2.35</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>90/177 (51)</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>92/149 (62)</td>
<td>1.43</td>
<td>0.89 – 2.30</td>
</tr>
<tr>
<td>Asian</td>
<td>214/298 (72)</td>
<td>1.43</td>
<td>0.86 – 2.38</td>
</tr>
<tr>
<td>Latino</td>
<td>234/337 (69)</td>
<td>1.31</td>
<td>0.75 – 2.31</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>315/556 (57)</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>190/260 (73)</td>
<td>1.67</td>
<td>0.94 – 2.98</td>
</tr>
<tr>
<td>Cantonese or Mandarin</td>
<td>136/175 (78)</td>
<td>2.13</td>
<td>1.23 – 3.70</td>
</tr>
</tbody>
</table>

Race/Ethnicity and Language

- Latino and Asian subjects adhered more often than white and black subjects
- Effect disappeared when language introduced
 - Increased adherence driven by those who preferred to speak Cantonese, Mandarin or Spanish
 - Within Asian and Latino participants
 - Non-English speakers adhered at higher rate
- What?

Race/Ethnicity and Language

- Language may be a surrogate for:
 - Immigration status: The "healthy immigrant"
 - Health belief system
- Are disparities in screening due to differences in health beliefs?
 - Impact
 - Severity
 - Self-efficacy
 - Family, friends, social network

Adherence to CRC Screening: Study Summary

- The best test is the one that gets done
 - Providing choice of CRC screening test increases adherence to screening
- Variation by race/ethnicity
 - Whites adhere more often to colonoscopy
 - Non-whites adhere more often to FOBT
- Race/ethnicity and language
 - Surrogates for immigrant status, health beliefs, trust in physicians
Optimizing the Effectiveness of Screening

- Colonoscopy Quality
 - Colonoscopy essential for all screening strategies
- How is quality measured?
 - Impact of adenoma detection rate (ADR)
 - Proportion of individuals at average risk for CRC in whom at least one adenoma is removed

Each 1% increase in ADR = 3% reduction in interval CRC

Corley. NEJM 2014
Colonoscopy Quality
You Can’t Remove What You Can’t See
Boston Bowel Preparation Scale

• 3 Segments:
 – Right Cecum / Ascending
 – Transverse Hepatic to Splenic Flexure
 – Left Descending to Rectum

• Score:
 – 0: mucosa not seen due to solid stool
 – 1: mucosa not well seen – staining, residual stool, opaque liquid
 – 2: minor amount of residual staining, small fragments of stool or liquid, but mucosa well seen
 – 3: entire mucosa well seen

Lai et al. GIE 2009; Calderwood et al. GIE 2010

Colonoscopy Quality
Bowel Preparation and ADR

Adenoma Miss Rate

Adenoma >5mm
Advanced Adenoma
Sessile Serrated
Adenoma

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Colonoscopy Quality Measures

• Adenoma detection rate: ≥ 25%
 – Each 1% increase in ADR = 3% reduction in interval cancers
• Improvement in ADR reduces interval CRC
• Appropriate screening and surveillance intervals
 – Average-risk, no adenomas = 10 years
 – 1-2 small (<1cm) adenomas = 5-10 years
 – ≥3 small, ≥1cm, HGD = 3 years

New Technology

• Endoscope accessories
• Next gen scopes
• Blood tests
Caps, Cuffs, Rings

- Improve visualization
- Flatten folds
- Center scope
- May increase ADR

Jain. Digestion 2016

Third Eye Panoramic

- Two side-viewing video cameras
- 330 degree image
- Clips onto standard pediatric or adult colonoscope

Self-Propelled Disposable Colonoscope: Aer-O Scope
Self-Propelled Disposable Colonoscope

Confocal Raman Spectroscopy

Blue, normal; red, hyperplastic polyp; green, adenoma; yellow, cancer; cyan, ulcerative colitis. Shaded areas indicate two standard deviations from the mean.

Optimizing Mortality Reductions through Colorectal Cancer Screening

- Which test is best?
 - The one that gets done
 - Racial and ethnic differences in adherence to specific screening strategies

- How can we optimize screening?
 - Increase adenoma detection rate

- How do you prepare for the future?
 - New technology: prepare for disruption