Snoring – Effects and Treatments

Jolie Chang, MD
Assistant Professor
Department of Otolaryngology, Head and Neck Surgery
University of California, San Francisco
February 17, 2018
Disclosures

- None
Outline

- Snoring definition
- Snoring Impact
- Evaluation
- Treatment
- Outcomes
Snoring and Sleep

- Chronic habitual snoring
 - 20% women; 40% men
 - Most common symptom of OSA (occurring in 70-95%)
- OSA
 - AHI >5 + excessive daytime sleepiness
- Primary snoring
 - AHI <5; no daytime symptoms
- Snoring risk factors
 - Age, sex, obesity, ETOH or sedative use, smoking, nasal obstruction, asthma, COPD.
Snoring - Acoustics

- Snoring = noise generated when air flows though a narrowed upper airway
- Sound source: oscillation of soft palate >> pharyngeal walls, epiglottis, tongue
- Atonia of upper airway -> narrowing/increased resistance-> turbulent airflow-> vibration of pharyngeal tissues

Measuring Snoring

- Most studies depend on self-report
- Snoring evaluation measures
 - No agreed standard
 - Subjective: bed partner report, self-report (VAS)
 - Objective:
 - microphone, airflow, vibrations
 - amplitude, frequency, duration, timing
- Studying clinical effects:
 - Snoring intensity? Sound frequency? Time spent snoring?
Effects of primary snoring
Social Impact

- Bed partner
 - Impaired sleep quality
 - Relationship disharmony

- Second-hand snoring
 - Once treated, partner QOL increased, sleepiness scores improved (Parish & Lyng. Chest 2003)
Snoring and Sleepiness

- Sleep Heart Health Cohort Study
- 6000 self-reported snoring and ESS
- ESS increases with snoring frequency and loudness

TABLE 3

<table>
<thead>
<tr>
<th>RDI</th>
<th>0</th>
<th>< 1</th>
<th>1–2</th>
<th>3–5</th>
<th>6–7</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.5</td>
<td>6.1</td>
<td>6.9</td>
<td>7.3</td>
<td>8.5</td>
<td>8.8</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>(275)</td>
<td>(249)</td>
<td>(241)</td>
<td>(162)</td>
<td>(162)</td>
<td>(1,089)</td>
</tr>
<tr>
<td>1.5–<5</td>
<td>6.1</td>
<td>6.9</td>
<td>7.5</td>
<td>8.2</td>
<td>9.2</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>(184)</td>
<td>(183)</td>
<td>(243)</td>
<td>(206)</td>
<td>(246)</td>
<td>(1,062)</td>
</tr>
<tr>
<td>5–<15</td>
<td>6.7</td>
<td>7.2</td>
<td>7.6</td>
<td>8.5</td>
<td>8.9</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>(135)</td>
<td>(137)</td>
<td>(276)</td>
<td>(254)</td>
<td>(406)</td>
<td>(1,208)</td>
</tr>
<tr>
<td>≥15</td>
<td>7.5</td>
<td>7.5</td>
<td>8.2</td>
<td>8.9</td>
<td>10.2</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>(58)</td>
<td>(60)</td>
<td>(125)</td>
<td>(175)</td>
<td>(370)</td>
<td>(788)</td>
</tr>
<tr>
<td>All</td>
<td>6.4</td>
<td>7.0</td>
<td>7.6</td>
<td>8.5</td>
<td>9.3</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>(652)</td>
<td>(629)</td>
<td>(885)</td>
<td>(797)</td>
<td>(1,184)</td>
<td>(4,147)</td>
</tr>
</tbody>
</table>

Heavy Snoring as a Cause of Carotid Artery Atherosclerosis

Sharon A. Lee1,2; Terence C. Amis, PhD1,2,4; Karen Byth, PhD2,4; George Larcos, MBBS3,4; Kristina Kairaitis, PhD1,2,4; Tracey D. Robinson, PhD1,2; John R. Wheatley, PhD1,2,4

1Ludwig Engel Centre for Respiratory Research, 2Westmead Millennium Institute, 3Department of Nuclear Medicine and Ultrasound, Westmead Hospital and 4University of Sydney at Westmead Hospital, Westmead, NSW, Australia

- SLEEP 2008.
- 110 Subjects; Cross-sectional study
 - PSG, snoring, carotid + femoral artery doppler U/S
 - Severe snoring (>50% sleep time) is associated with carotid – but not femoral-atherosclerosis
 - AHI was not associated with CA after adjusting for snoring severity.
 - Adjusted for AHI - Did not examine primary snorers
Mechanism of atherosclerosis

Rabbit model

- Right common carotid exposed to 6 hours of vibration
- Endothelial dysfunction: Reduced vasorelaxation
- Vibration induced vascular injury

Cho et al. Sleep. 2011
Snoring and CV events

• Prospective cohort study with 10 year followup
• 377 snorers; 264 non-snorers; AHI<5
• Self-reported snoring confirmed by close relative, no excessive daytime sleepiness
• No increased risk of fatal or nonfatal CV events in primary snorers without OSA.
Evaluation of Snoring

- Screen for OSA
- Sleepiness, daytime symptoms
- Bed partner – Separate rooms
- Patient expectations
- Exam
 - BMI
 - Nose
 - Palate/Oropharynx
 - Mandible
 - Neck
Snoring Intensity and OSA

- 1600 Habitual snorers
 - PSG and objective measures
- Significant correlation between loudness of snoring and AHI
 - AHI < 5 46dB
 - AHI >50 60dB

Figure 1—Correlation between severity of OSA and snoring intensity

Snoring Treatment

- Amazon.com ~800+ products
- Treatment Goals
- Treatment Types:
 - Behavior Modification
 - Devices
 - Surgery
Snore Aids

- Prospective randomized trial
 - Oral lubricant spray
 - Breathe right strips
 - Snore-no-more pillow
- No objective or subjective difference
Behavioral Modification

- Position
- Weight Loss
- Avoid alcohol, sedatives
- Singing/Exercises
Exercises for Snoring

- 39 patients randomized: Nasal strips plus
 1. Respiratory exercises (control)
 2. Oropharyngeal exercises (8 minutes TID)
- Decreased snoring frequency by 36%; Snore index 99.5 to 48.2
Devices – MAD and Theravent
Surgical Approaches

- Nasal
- Tonsils
- Palate
- Tongue
Treating Nasal Obstruction

- Trial with nasal steroid spray x 3 weeks
- Breathe-right strips
- Allergy and sinus management
- Surgery – Septoplasty, turbinate reduction, NSR
- Medical or surgical treatment
 - Improves quality of life
 - Reduces mouth breathing
 - Variable results on snoring
Palate Stiffening

- Injection Snoreplasty
 - 99% denatured alcohol
 - 3% sodium tetrade cyl sulfate

- Palate Radiofrequency
 - 1-3 treatments

- CAPSO – Cautery Assisted Palatal Stiffening
 - Pang OtoHNS 2007: remove mucosa
 - Subjective improvement at 3 months

- Pillar Implants
 - 3-5 in muscular layer of soft palate
 - Extrusion in up to 11%
Pillar vs. RF (one treatment)

- RCT single session implant vs RF treatment (14 per group)
- 3-month VAS improved in both: implant group better
- Objective snore maximal loudness reduced in implant group
- Snoring index reduced in RF group

Lee et al. PLOS one 2014.
Pillar Implants – Long Term

- Rotenberg and Luu. Laryngoscope 2012.
- Prospective cohort: 23 snorers, AHI < 15
- At 1 year: 95% would recommend;
- At 4 years: only 22% would recommend

Fig. 1. Comparison of mean snoring scale at baseline, week 52 and week 208. * = significant difference from baseline.
Palate Reduction

- UPPP, UPF

- LAUP – Laser Assisted Uvulopalatoplasty
 - 1-3 treatments to reshape the soft palate
 - Can reduce tonsil size
 - Laser: CO2, KTP, Argon, (electrocautery)

- Comparison of UPPP vs. LAUP 1-4 years. (Prasad 2003) – 60 patients, bed-partner queried
Palate Suture Techniques

Suture Technique

A

TranQuill Sling

Comparisons

- Measures of snoring: subjective vs. objective
 - Often results don’t match
- Most treatments have demonstrated improvement in subjective scores at 6-12 months post-procedure (short term)
- Long-term relapse rate is high
Treatment Comparisons

- Terryn et al. Oto HNS 2015.
- 200 pts treated with CPAP, MAD, or surgery (various).
- AHI < 20
Conclusions

- Snoring is prevalent and has significant impact on the patient and the bed partner.
- Evaluation should rule out OSA.
- Snoring interventions can improve snoring with varying success. Defining goals of treatment is essential.
- More work is needed to define health effects of snoring and changes with treatment.