Remembering the forgotten ventricle:
Management of acute right ventricular failure in Pulmonary Hypertension

Mandar Aras, MD, PhD
Assistant Professor
Advanced heart failure and heart transplant
University of California, San Francisco

Objectives

- Review the descriptive and hemodynamic classification of pulmonary hypertension
- Discuss the significance of acute right heart failure (ARHF) in PH
- Discuss management principles for ARHF in setting of pre-capillary vs. post-capillary PH, including the role of:
 - Oxygenation
 - Pulmonary vasodilator therapies
 - Inopressors
 - MCS, transplantation

Pulmonary Hypertension (PH)

Sustained elevation of mean pulmonary artery pressure*:

\[\text{mPAP} > 25 \text{ mmHg} \]

* mPAP = Normal: 8 - 20 mmHg
 ePASP Echo Doppler > 40 mmHg

PH ≠ PAH
GROUP 1 – Pulmonary Arterial Hypertension (PAH)

1.1 Idiopathic PAH
1.2 Heritable PAH
1.3 Drug- and Toxin-Induced
1.4 Associated with:
 1.4.1 Connective Tissue Disease
 1.4.2 Human Immunodeficiency Virus (HIV) Infection
 1.4.3 Portal Hypertension
 1.4.4 Congenital Heart Disease
 1.4.5 Schistosomiasis

GROUP 2 – PH Due to Left Heart Disease

2.1 LV Systolic Dysfunction (HFrEF)
2.2 LV Diastolic Dysfunction (HFpEF)
2.3 Valvular Disease
2.4 Congenital/Acquired Left Heart Inflow/Outflow Tract Obstruction and Congenital Cardiomyopathies

GROUP 3 – PH Due to Lung Disease and/or Hypoxia

3.1 Chronic Obstructive Pulmonary Disease
3.2 Interstitial Lung Disease
3.3 Other Pulmonary Diseases With Mixed Restrictive and Obstructive Pattern
3.4 Sleep-disordered Breathing
3.5 Alveolar Hypoventilation Disorders
3.6 Chronic Exposure to High Altitude
3.7 Developmental Lung Diseases

GROUP 4 – Chronic Thromboembolic PH (CTEPH)

GROUP 5 – PH With Unclear Multifactorial Mechanisms

5.1 Hematologic Disorders: Chronic Hemolytic Anemia, Myeloproliferative Disorders, Splenectomy
5.2 Systemic Disorders: Sarcoidosis, Pulmonary Histiocytosis, Lymphangioleiomyomatosis
5.3 Metabolic Disorders: Glycogen Storage Disease, Gaucher Disease, Thyroid Disorders
5.4 Others: Tumoral Obstruction, Fibrosing Mediastinitis, Chronic Renal Failure, Segmental PH

• Single center study from Australia
• 6,994 screened → 936 pts (9.1%) with PH on ECHO Doppler (defined as ePASP >40 mmHg)

Etiology of PH on Echocardiogram:

PH Hemodynamic Profiles:

Vachiery JL et al, J Am Coll Cardiol 2013;62: D100-8
Fang J et al, J Heart Lung Transplant 2012;31:153-33
Group 1 – PAH

Group 3, 4, 5

Pre-capillary PH
- PA mean ≥ 25mmHg
- PAWP < 15 mmHg
- TPG > 12
- PVR > 3 Wu

Modified from:
- Vachiery JL et al. *J Am Coll Cardiol*. 2013;62:D100-8

Group 2: PH due to left heart disease

- LV systolic dysfunction
- LV Diastolic dysfunction
- Valvular disease
- LH obstruction & Congenital CMP

Isolated Post-Capillary PH
- PAWP>15 mmHg
- TPG > 12
- PVR in range

Combined post- & pre-capillary PH

- Left sided filling pressure
- Neurohormones, cytokines, other mediators

Normal

Endothelin Receptor Antagonists (oral)
- Bosentan
- Ambesnten
- Macitentan

Phosphodiesterase Type-5 Inhibitors (oral)
- Sildenafil
- Tadalafil

Soluble Guanylate Cyclase Stimulators (oral)
- Riociguat (also approved for CTEPH)

Prostacyclin Receptor Agonist (oral)
- Selexipag

Prostacyclin Derivatives

- Epoprostenol: IV
- Iloprost: inhalational
- Treprostinil: inhalational, oral, SQ or IV
Pulmonary hypertension (PH) from any etiology is associated with:

- Worse prognosis due to right heart failure
- Increased morbidity and mortality
- Reduced exercise capacity

Working Definition of Right Heart Failure

A clinical syndrome due to an alteration of structure and/or function of the right heart system that leads to a sub-optimal delivery of blood flow to the pulmonary circulation and/or elevated venous pressures - at rest or with exercise.
PAH: It's all about the RV!!

![Graph showing survival rates for different RV function levels](image1)

- RVEF > 35%, PVR < 650 (n=36)
- RVEF > 35%, PVR > 650 (n=20)
- RVEF < 35%, PVR < 650 (n=13)
- RVEF < 35%, PVR > 650 (n=41)

p < 0.01

PH in LHD: It's all about the RV!

![Graph showing survival rates for different RV function levels](image2)

- Group 1: Normal PAP, preserved RVEF
- Group 2: Normal PAP, low RVEF
- Group 3: High PAP, preserved RVEF
- Group 4: High PAP, low RVEF

P<0.001

Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies

LVAD outcomes: It's all about the RV (RV/PA coupling)

<table>
<thead>
<tr>
<th>Category</th>
<th>High Risk Variables Predicting RVF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td>Age, Female gender</td>
</tr>
<tr>
<td>Clinical setting</td>
<td>Need for mechanical ventilation, Need for dialysis/CRRT</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>High INR, High NT-proBNP (heterogenous)</td>
</tr>
<tr>
<td>Hemodynamic (RHC)</td>
<td>Low RVSWI, High CVP</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>Moderate to severe RVD, Elevated RV/LV ratio, Low RV free wall longitudinal systolic strain</td>
</tr>
</tbody>
</table>

Pathophysiology of RV Failure in PH

De Marco T. Advances PH. 2005;4:16
Voelkel et al. Circ. 2006;114:1883
Pathophysiology of RV Failure in PH

- Pulmonary hypertension → RV Pressure overload
- Adaptive RV hypertrophy
- Decreased wall stress
- Maladaptive RV hypertrophy & fibrosis
- Diastolic dysfunction

Compensated Phase
- Normal CO
- Normal RAP

Decompensating Phase
- Higher RAP to maintain adequate CO
- RV remodeling

De Marco T. Advances PH 2005;4:16
Nootens et al. J Am Coll Cardiol 1995;26:1581
Voelkel et al. Circ 2006;114:1883

Cont.

RV dilation & systolic failure

RV ischemia:
- ↑ Wall stress & heart rate
- ↑ MVO₂
- ↓ Coronary perfusion gradient (↓ DBP, ↑RV/EDP)
- Tricuspid regurgitation
- Decreased LV compliance/preload (VI):
 - Inter-ventricular septal shift
 - ↑ Intrapericardial pressure
 - LV transmural FP = LVEDP-IPP
 - ↓ LV myocardial congestion

Compensated Phase
- ↑ RAP ↓ CO
- Congestive hepatopathy/ascites/peripheral edema
- Renal congestion
- Hypoperfusion
- Hypoxemia (PFO)
- Acidosis
- Life-threatening dysrrhythmias

De Marco T. Advances PH 2005;4:16
Haddad et al. Circ 2008;117;1717

Measuring RV systolic function

- TAPSE (Tricuspid annular plane systolic excursion)
 - TAPSE < 1.6 indicates RV systolic dysfunction
- Fractional area change (FAC)
 - Two-dimensional FAC (as a percentage) provides an estimate of RV systolic function.
 - Two-dimensional FAC < 35% indicates RV systolic dysfunction.
- Tissue doppler S'
 - Easy to measure, reliable and reproducible
 - S' velocity < 10 cm/s indicates RV systolic dysfunction.

De Marco T. Advances PH 2005;4:16
Haddad et al. Circ 2008;117;1717
Management of Acute Right Heart Failure (ARHF) in PH

ARHF: Goals of Management

- **Immediate**
 - Restore oxygenation
 - Treat congested/volume overload state
 - Restore vital organ perfusion (kidneys, brain, heart, liver)

- **Short Term**
 - Identify and treat precipitating factors
 - Initiate/readjust maintenance regimen
 - Minimize ICU time and length of stay

- **Intermediate and Long Term**
 - Prevent early readmission
 - Optimize medical regimen to
 - Alleviate symptoms
 - Slow disease progression
 - Reduce morbidity & mortality
 - Successfully bridge patients to more definitive therapy
 - PAH → lung tx
 - PH in LHD with VAD → Heart Transplant

Medical Management Principles in ARHF

- **Identify and Treat Triggering Factor(s)**

- **Reduce RV Afterload**
 - External (PVR, PAC)
 - Internal (Wall Stress)

- **Optimize Preload**

- **Optimize Cardiac Output**
 - CVO2 >65%, CI >2.0 l/min/m²

- **Optimize Perfusion Pressure**

Medical Management Principles in ARHF

- **Identify and Treat Triggering Factor(s)**

- **Reduce RV Afterload**
 - External (PVR, PAC)
 - Internal (Wall Stress)

- **Optimize Preload**

- **Optimize Cardiac Output**
 - CVO2 >65%, CI >2.0 l/min/m²

- **Optimize Perfusion Pressure**

Medical Management Principles in ARHF

- Identify and Treat Triggering Factor(s)

- Reduce RV Afterload:
 - External (PVR, PAC)
 - Internal (Wall Stress)
 - iNO, IV and/or inhaled Prostanoids (PAH)
 - PDE5 inhibitors (IV, oral); others
 - Optimal fluid management

- Optimize Preload

- Optimize Cardiac Output
 - CVO2 >65%, CI >2.0 l/min/m²

- Optimize Perfusion

Reducing RV External Afterload (PVR): Pulmonary Vasodilators - General Considerations:

- Use of pulmonary vasodilators in chronic PAH differs from acute PH/RH failure
- Potential adverse hemodynamic effects of non-selective pulmonary vasodilators
 - V/Q mismatch
 - Inhaled treatments most selective
 - iNO most selective; no effect on SVR, but may lead to pulmonary edema in PH due to LHD
 - Systemic administration of pulmonary vasodilators can induce hypotension
 - In presence of fixed pulmonary venous hypertension (PVOD), worsen RV ischemia
 - Monitor renal function closely!!

Reducing RV External Afterload (PVR): Pulmonary Vasodilators

- Oxygen
 - Aim for SpO2 >90%
 - Avoid intubation in severe PAH → cardio-circulatory collapse
- Inhaled NO in pre-capillary PH (PAH)
 - selective pulmonary vasodilator
 - PVR, no Δ on SVR, MAP
 - no V/Q mismatch
- Other inh. Prostanoids (iloprost, epoprostenol) beneficial in pre-capillary PH (PAH)
 - enhanced effect with PDE 5-Inhibitors
- IV, oral PDE-5 Inhibitors

PH in LHD: iNO

19 patients with class III (n=5) to IV (n=14) HF; mean PVR 2.8 WU

Protocol: 80 ppm inhaled nitric oxide (iNO) over 10 minutes
Effect of INO On Pulmonary Circulatory In Setting of PVH

- PA Vasodilation
- PA flow
- No venous dilation (inactivated by Hgb)

Reducing RV External Afterload (PVR, ↓PAC): Pulmonary Vasodilators

- IV prostacyclin derivatives initial treatment of choice in PAH (epoprostenol, treprostinil, iloprost)
 - All reduce PVR and improve RV performance
 - Epoprostenol preferred agent in ARHF
 - Short acting
 - Shown to improve survival
- Caveat: systemic hypotension which can limit use
 - May need concomitant pressors
 - Avoid tachyarrhythmia

Reducing RV External Afterload (PVR, ↓PAC): Pulmonary Vasodilators

- In severe HF: ↓PCWP and ↓CO
 - Oral or IV sildenafil may provide a transition method from INO or inhaled epoprostenol

Sildenafil in PH due to Advanced HF

- 14 pts with AHF (EF<24±14%) and Cpc PH refractory to milrinone, dobutamine, nitroprusside, nesiritide
 - Sildenafil 25-50 mg administered orally q 8hr <3 doses
 - 93% of pts ↓mPAP >20%; 20% pts ↓PVR/SVR (relative PA selectivity); 50 mg more effective; sildenafil safe & effective to improve candidacy for OHT

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Post-sild.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPAP (mmHg)</td>
<td>44±11</td>
<td>31±14</td>
</tr>
<tr>
<td>PAWP (mmHg)</td>
<td>25±2</td>
<td>18±2</td>
</tr>
<tr>
<td>PCWP (mmHg)</td>
<td>2.4±0.9</td>
<td>2.0±1.0</td>
</tr>
<tr>
<td>SVR (dyns-sec-cm⁻⁵)</td>
<td>311±119</td>
<td>193±114</td>
</tr>
<tr>
<td>PVR (dyne-sec-cm⁻⁵)</td>
<td>106±23</td>
<td>101±21</td>
</tr>
<tr>
<td>SAP (mmHg)</td>
<td>102±15</td>
<td>102±11</td>
</tr>
<tr>
<td>DAP (mmHg)</td>
<td>82±13</td>
<td>82±11</td>
</tr>
</tbody>
</table>

Wall SJ et al. J Am Coll Cardiol 2000;36:1940
Kazemi S et al. Am J Cardiol 2001;87:1161
Dugas B et al. J Am Coll Cardiol 2000;36:1940
Haddad R et al. J Am Coll Cardiol 2000;36:1161
De Marco T. Advances PH 2005; 4:16

De Marco T. Advancing Heart Failure: From Basic to Clinical Science 2008; 4:15
Hemodynamics were collected and analyzed both pre and post (within 48-72 hrs) LVAD implantation on a cohort of 64 HFrEF pts. RV afterload almost always declines with LVAD insertion and does so rapidly.

LVADs Decrease "Fixed" PH in Cardiac Transplant Candidates (Reduction in Left Sided Filling Pressures)

- Prospective, 6 week study
- N= 35 pts
- Severe HF and indication for LVAD
- "Fixed" Cpc-PH, PVR >3.5 WU despite vasodilators/inodilators
- RV cath before LVAD, then 3 days and 6 weeks post- LVAD
- Device: MicroMed DeBakey (24), DuraHeart (3), Novacor (8)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>3 Days</th>
<th>6 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPA pressure</td>
<td>44.9 ±6.3</td>
<td>25.4 ±4.3*</td>
<td>18.4 ±3.9*</td>
</tr>
<tr>
<td>PAP pressure</td>
<td>50.4 ±9.6</td>
<td>33.0 ±7.1*</td>
<td>26.8 ±4.6*</td>
</tr>
<tr>
<td>CO (L/min)</td>
<td>3.1 ±0.6</td>
<td>5.7 ±0.7*</td>
<td>4.0 ±0.9**</td>
</tr>
<tr>
<td>PVR (Wu units)</td>
<td>5.1 ±2.6</td>
<td>2.9 ±1.3*</td>
<td>2.0 ±0.8*</td>
</tr>
</tbody>
</table>

* P< .0001; **P< .002

TPG ↓ from >16 to <8 mmHg

PDE-5 Inhibitor Treatment for Persistent PH after MCS

- **Study**
 - Tedford et al. 2008
- **N**
 - LVAD: 138
- **Design**
 - N=58, no-in PVR 1-2 wks post LVAD despite ↓ in RVAP
 - 26 consecutive pts received sildenafil (mean dose 52 mg TID)
 - 32 controls
- **Results**
 - Sildenafil Group (12-15 wks post-LVAD)
 - PVR ↓ 5.87± 1.9 to 2.96± 0.92**
 - MPAP↓ 36.5 ±24.3 to 24.3 ± 9.6**
 - PVR sign. lower in sildenafil vs P placebo vs control
 - Sildenafil resulted in improved RV function (dp/dt, TAPSE) vs control

* *P< .001

In patients with persistent mixed PH after LVAD, sildenafil is a useful adjunctive therapy to ↓ PVR and potentially facilitate heart transplantation

Medical Management Principles in ARHF

- Identify and Treat Triggering Factor(s)
 - Reduce RV Afterload:
 - External (PVR, PAC)
 - Internal (Wall Stress)
 - Optimize Preload
 - Hypovolemia ➔ IV diuresis/hemofiltration
 - Hypovolemia with hypoperfusion (no evidence for congestion, rare) ➔ Administer fluid
 - Optimize Cardiac Output
 - COV2 >55%, CI >2.0 l/min/m2
 - Optimize Perfusion Pressure

Reduce RV internal afterload (Wall Stress ≈ P x R/h)
Decompress RV to ↓ preload/wall stress ➔ ↓MVO₂, ↑ CPP, ↓ RV ischemia; ➔ improve LV filling and systemic CO; relieve organ congestion

- Avoid volume loading in setting of hypotension or pre-renal azotemia
 - No benefit from RV Frank-Starling mechanism
 - Dilates RV ➔ ↓ LV filling, ↓ CO
- Diuretics
 - Intermittent or continuous infusion loop diuretics, +/- thiazide, +/- aldosterone antagonists
- Mechanical fluid removal: CVVH/Aquapheresis

Augment RV contractility
- Inotropes
 - Dobutamine/dopamine
 - Other adrenergic agents (NE, epinephrine)
 - Milrinone in PH due to LHD (Ipc-PH, Cpc-PH)
 - Addition of IV epoprostenol (PAH)
 - Combination
 - Caveat: tachyarrhythmias, hypotension (HTN concerning esp with milrinone in PAH)

Medical Management Principles in ARHF

- Identify and Treat Triggering Factor(s)
- Reduce RV Afterload:
 - External (PVR, ↓ PAC)
 - Internal (Wall Stress)

- Optimize Preload
 - Dobutamine/dopamine (monitor for tachyarrhythmia)
 - Milrinone (caveat: systemic hypotension in PAH)
 - Favored in PH due to LHD

- Optimize Cardiac Output
 - CVO₂ >65%, CI >2.0 l/min/m²

Optimize Perfusion Pressure
- Norepinephrine
- Vasopressin

Medical Management Principles in ADRHF
Proposed Algorithm: Treatment of ADRHF in PAH

Identify and treat underlying precipitating factors
- Dietary indiscretion, infection, anemia/erythrocytosis, thyroid disorders, dysrhythmia, ischemia, PE, NSAID

Restore oxygenation
- Supplemental high flow O2
- Avoid mechanical ventilation
- Avoid excess PEEP
- Avoid acidosis

Restore vital organ perfusion
- Pulmonary vasodilators (afterload)
- O2/iNO/prostanoids (IV, inh.)
- Combination therapy
- Inotropes / vasopressors
- Antithrombotics / IV epoprostenol

Relieve congestion
- IV loop diuretics
- IV oral thiazide diuretic
- Oral aldosterone antagonist
- Mechanical fluid removal (CVVH or Aquapheresis)

Unresponsive/refractory
- Transplant Candidate: Bridge to Transplant
- Continuous IV inotropes
- Atrial Septostomy
- ECLS (ECMO, Artificial lung)
- Transplant Candidate
- Relief of symptoms
- Hospice Care

Stabilization achieved
- Transition to chronic therapy
- Wean NO with epoprostenol
- Wean IV inotropes
- Optimize chronic therapies
- Evaluate for transplantation

Proposed Algorithm for Management of Cpc-PH due to LHD

On optimal, guideline directed therapy for HFrEF
- Transplant eligible
- Not transplant eligible
- Vasoreactive
- Not vasoreactive

Acute vasoreactivity testing

Vasoreactive
- Continuous IV inotropes
- Atrial Septostomy
- ECLS (ECMO, Artificial lung)
- Transplant Candidate
- Relief of symptoms
- Hospice Care

Not vasoreactive
- Frequent RHC q 3-6 mos

 Persistent PH
- PH resolves or becomes vasoreactive
- Consider heart-lung transplantation

Heart transplant
- Investigational VAD
- Continuous HF Therapy
- DT VAD

Adapted from Murray SJ, Adv in PH 2006;5:33
Mehra et al., J Heart Lung Transplant 2005;25:1024
Conclusions

- ARHF in PH is associated with ↑ morbidity and mortality
- ARHF is a syndrome with complex pathophysiology
 - Characterized by dyspnea, fatigue, edema, syncope, ↑ CVP, vital organ congestion +/- hypoperfusion
- Pharmacologic strategies should be aimed at:
 - Restoring oxygenation
 - Relieving congestion and hypoperfusion
 - Maintaining vital organ perfusion is critical
- Management includes judicious- individualized use of:
 - Pulmonary vasodilators
 - Diuretics/ hemofiltration
 - Inotropes
 - Vasopressors
 - Atrial septostomy, mechanical circulatory support (BTT), and transplantation

Thank you!!